Jun
07
2017

FARO Tracer M Laser Projector for Factory Metrology

FARO has recently launched the Tracer M Laser Projector. This new solution allows users to reduce the expensive delays associated with the alignment and assembly of large components, help improve process precision, and negate the need for physical templates and hard tooling.

The Tracer M uses Advanced Trajectory Control (ATC) to deliver fast projection. ATC provides superior dynamic accuracy and a rapid refresh rate which minimizes flicker. Photogrammetric targets are used to enable the best fit alignment of the projected image onto the surface or object, thereby allowing the projected image to be consistent with the CAD model.

For larger assemblies and for use in space-constrained areas, multiple Tracer M projectors can be controlled from a single workstation to provide large-scale virtual templates in one coordinate system. The risk of human error and costly scrap during assembly is significantly reduced, in addition, manufacturers are able to avoid the time and expense associated with using large, heavy templates.

 

Read More.

Apr
04
2017

Point clouds point the finger for law enforcement and public safety

Daniel Oxley, Account Manager – Public Safety, Europe North, FARO Technologies UK Ltd discusses how the ability to precisely scan and capture important macro and micro crime- and incident-scene information can revolutionise forensics and legal proceedings

Advances in 3D scanning technology and its associated hardware have created a new paradigm in the ability to interrogate crimes and incident scenes in more detail than ever before. As well as measuring and preserving minute details, the technology will also speed up forensic processes and save significant legal time and costs.

With applications in arson, crime, homicide and accident analysis, to name but a few, the technology also removes many of the human factors and accidental biases that could skew or hinder subsequent investigations. By providing unaltered, unambiguous and unbiased total-scene coverage, the level of detail on offer really is a game changer.

Photos on their own are no longer adequate. The investigators may not photograph the whole scene or could accidentally miss items that may be vital to the ongoing investigation. With FARO’s 3D scanning technology this is no longer an issue, as it will record everything. Users cannot only capture the scene a lot quicker – saving up to three or four days and significant labour costs – but they will also have complete scene data. What is more it is all measurable. This is essential for automotive collisions or for comparison to personal-interrogation data from crime scenes, relating to suspect location, reach, attitude and position.

Primary point cloud data can be captured using an ultra-portable FARO S Series Laser Scanner, which scan can a scene to an accuracy of ±1 mm. Offering minimal set up, the unit is also self-levelling so is incredibly easy to use. Complementing the S Series scanner, and for hidden or tight-access areas, the Faro Freestyle Handheld Laser Scanner can provide extra detail for specific areas in static crime scenes or, thanks to its impressive portability, for crush events in vehicle accidents, where deformations can be easily recorded for further analysis. When additional levels of accuracy are required, for finer details in shoe prints, bite marks or tooling scrapes, the FARO Forensic Scan Arm is a portable contact/non-contact measurement system that offers a resolution of 0.05 mm – less than the thickness of a human hair.

To process and present the cloud data, FARO offers dedicated 2D- and 3D diagramming and advanced animation software, like FARO Zone 2D, Crash Zone, Crime Zone or the SCENE software. For example, using SCENE’s intuitive ribbon-based approach, users can leverage the software to not only view the scene, but also calculate suspect heights based on photos. Using optional modules, blood spatter origins can also be determined, as can bullet trajectories. Finally, for crime scene visualisation, in courtrooms for example, FARO’s Video Pro plug in for SCENE, allows users to navigate to any point and view scenes from any angle. Floors and roofs can be removed and videos can be created that can be shared and viewed on line or with virtual reality headwear.

With many judicial and law-enforcement applications already in place – including deployment by the International Criminal Court in Holland – 3D scanning is the new benchmark for fast, easy and accurate collection of vital scene data and it is already making a real difference in the world of forensics.

 

More information is available at http://www.faro.com

Mar
03
2017

Scan2Print

FARO, 3D Systems and Canon 3D Printing, will be co-hosting a Scan2Print event on Thursday 4th May 2017.

Taking place at the Canon Open Experience Centre, Uxbridge. the free event’s program will focus on the exciting opportunities delivered by the latest 3D Printing and 3D Scanning technologies, to enhance the efficiency of product design processes.

Real life customer examples will illustrate how informed manufacturers, engineers, and product designers are combining 3D Scanning and 3DPrinting to achieve record levels of productivity, efficiencies, and cost-reductions.

FARO’s advanced 3D solutions enables fully digital workflows by capturing real world geometry for the purposes of empowering design. The company’s advanced technologies allow innovations to be realised, faster design cycles to be completed, and not least, they enable users to become more competitive.

 

Date: 4th May 2017
Time: 9:30am – 2pm
Location: Canon Open Experience Centre, Uxbridge

 

Click here to view the Agenda.

Register here.

 

Feb
23
2017

Baroque Topologies

FARO Technologies are thrilled to have aided Andrew Saunders, Associate Professor from the University of Pennsylvania to accomplish his mission of collecting a digital archive of Baroque art and architecture.  Saunders, who works in the Department of Architecture travelled to Italy for six weeks in order to scan and archive some of the most prominent Italian Baroque architecture. Following the University of Pennsylvania’s commitment to ‘advancing the public good–both locally and globally–through art, design, planning, and preservation,’ the purpose of this project was to discover a superior method to digitally explore highly complex baroque architecture.

By using a FARO Focus3D X 130 laser scanner, data was captured showing the prospering evolution from the early and high baroque in Rome extending to the late baroque in the Piedmont Region in Northern Italy. The archive includes work from Francesco Borromini, Bernardo Vittone, Gian Lorenzo Bernini, Pietro da Cortona Guarino Guarini, and Carlo Rainaldi. Precise 3D models were produced of the interior spaces of various churches which can now be viewed in full colour.

Taking into account that there were many challenges during this project, Andrew Saunders pointed out that the project would not have been possible without the contributions it received from its co-workers including FARO, Autodesk and the Italian contacts that made it possible to gain access to the scans.

FARO made a significant contribution to this project by providing a Focus3D X 130 laser scanner. This ultra-portable device allows users Topologies, FARO, University of Pennsylvania, baroque art, FAto record complex structures delivering realistic and true-to-detail scan results. The high resolution scanner has a range from 0.6m up to 30m and a distance accuracy of up to ±2mm. It also has a one million points per second scanning rate enabling fast, straightforward and accurate measurements of objects and buildings. FARO also offered software and training to those who had the responsibility of operating the laser scanner. The purpose of these scans was to create a comprehensive digital archive of the work. High resolution scans using the FARO Focus3D X 130 allowed verification, calibration and discovery of Baroque topologies.

Saunders stated, “The ability to capture, record and simulate increasingly larger sets of data, coupled with remote access to cloud computing and progressively more affordable additive fabrication technology, provides new opportunities and methods for understanding and assessing complexity and representation in architecture.”

The results from this project are extraordinary in many ways. The data that has been collected will now create digital access to some of the most prominent churches in the world, in a way that has never been available before. Furthermore, the captured scan data will allow experts to carry out reverse engineering of the algorithms behind the truly astounding baroque architecture.

However, the project is still not yet completed. It is intended that the archive will be used for in depth analysis and comparisons between the Italian churches. Moreover, The University of Pennsylvania School of Design will now work with Autodesk in order to make the archive available to the public as well as other students and scholars.

To access interactive 360 degrees views of the baroque architecture please click here. 

Feb
10
2017

Clackamas County Sheriff’s Office

The Clackamas Criminal Reconstruction and Forensic Team (CRAFT) is an inter-agency team with one full-time and 18 on-call Reconstructionists. They have traditionally been called in to investigate fatal and serious injury crashes in Clackamas County and to assist with crime-scene investigations. Because fatal crashes were causing lengthy roadway closures, the Clackamas County, Oregon CRAFT team was challenged with limiting road closure time and opening roadways faster. As a result, the team decided to use the FARO Focus3D X 330 scanner as a solution to thier problem.

clackamans county sherrif's office 2

The capabilities of the laser scanner have allowed for a more flexible approach to utilizing the CRAFT resources on a variety of calls, including those they otherwise had not been able to re-spond to prior to adopting the scanning technology. Criminalist O’Neil commented on how effective the FARO scanner is at capturing crash and crime scenes, “By using the scanner, we spend less time on the scene, we get better data, and we can use a smaller crew. I prefer to have two people to set targets and move the scanner, but, if necessary, I can do it all myself.” O’Neil calculated that using the FARO Focus3D X 330 scanner has saved the Clackamas County Sheriff’s Office (CCSO) more than $28,000 in overtime costs injust 16 months of operation.”

CRAFT is now called out to scan scenes whenever there is an officer-involved shooting, an officer-involved crash, or where a county or city liability may exist. The Focus3D X 330 provides the investigators with a unique ability to accurately verify line of sight issues in a crash or shooting incident. According to Criminalist O’Neil, “In an officer-involved shooting, you can position the view of the point cloud to be at the officer’s eye level. As you move through the cloud, you can see the scene exactly as they saw it.”

 

Read More.

Feb
02
2017

Digital Time Capsule of an Experimental Lighthouse

There are quite a number of structures unique to London: Big Ben, the London Eye, St. Paul’s Cathedral and Westminster Abbey, to name a few. But even the most ardent of Londoners may not be aware of their city’s one and only lighthouse, which has been unassumingly tucked away in London’s East End since 1864. Maybe the lighthouse’s lack of acclaim is due to the fact that it doesn’t serve as a lighthouse at all.  Or that it never has, actually. From the outset, Trinity Buoy Wharf Lighthouse served as an experimental hub for pioneering lighting techniques to be implemented in lighthouses and lightships along the entire coast of Great Britain. The lighthouse’s design and construction was the brainchild of Sir James Douglass, who is best known for his work on the fourth Eddystone lighthouse at Rame Head. But Douglass was far from the only eminent Briton to work at Trinity Buoy Wharf Lighthouse. When oil and gas lighting were deemed obsolete, Michael Faraday, best known for his discoveries in electromagnetism, was commissioned to create and test different designs for electric lighting and lenses. He even set up a workshop on-site to have direct access to test his ideas.

lighthouse london blog pic

Beyond boasting an impressive historical record, the lighthouse is also an extremely well-preserved example of Victorian architecture, making it the perfect subject for a new technique in heritage preservation. It is an all too common and devastating development when a structure, which once stood in pristine condition, falls into such disrepair that it can no longer be visited or recognised. Any record that would have been pre-emptively collected would likely have been limited to photographs, written documents and short videos, none of which allow a visitor to experience the structure as it once stood.

Taking advantage of recent advances in cutting edge technology, a team of visual and audio engineers aims to change this trajectory. Using a laser scanner, the team first captures the dimensions of the structure of interest. The data is converted into a 3D model which is then rendered into a virtual reality environment. Using a virtual reality headset, a user is able to effectively “step into” the structure as if walking around the actual site. Strategically placed audio clips inform the user of the structure’s history, so he or she is left with a very powerful, immersive sensory experience highlighting the structure’s beauty and historical context. The team hopes that the project will set a precedent for heritage preservation so that more people can explore a repository of heritage sites as they currently stand rather than after they have fallen derelict, scattered as fragments, overgrown and forgotten.

To create the digital model, Adrian (pictured) used the FARO 3D X130 tripod-mounted laser scanner to gather point cloud data at 2mm precision of the entire exterior and interior of the lighthouse and adjoining chain store. The efficiency of the scanning allowed a general scan to be obtained in less than 6 hours.  For the more detailed objects like the singing bowls in the picture, Adrian used a FARO Scanner Freestyle3D. It’s hand-held design allows the user to capture all sides of an object in a single sweep rather than through multiple re-adjustments of a static scanner. The smaller size of Freestyle 3D also allows accessibility into hard-to-reach nooks and crannies that might prove impossible to capture with a static scanner. The only downside is looking like you are performing new-age yoga while gathering data. But who really cares when the data come out so darn good?

Feb
01
2017

FARO solutions for inspection in R&D applications inside the automotive industry

FARO measurement technologies have been selected by leading automotive companies to support their production processes in different areas such as research and development, pre-production, production and digital factory & facility management.

In this brief blog post we will give you an overview of the research and development applications, the core of innovation processes and the backbone on which the success of a company in today’s hyper-competitive market depends on.

Automotive_vlcsnap-00004_reduced

 

Clay Studios – CNC Cutter Paths

If the creative act of determining and defining a car‘s form takes place prior to the physical production, clay studios must be used to generate data for CAD and CAM software, and CNC cutter paths for model machining.

Clay studios were one of the first in the automotive industry to implement scanning technology into their day-to-day processes to convert the physical model into CAD, which can then be used as a reference for all further developments.

The configurable FARO optical scanning solutions can easily be moved around the workshop and used to scan the entire surface of the model, quickly collecting all the necessary data for successive processing. Scanned data are also used to generate CNC cutter paths to allow subsequent machining or for reverse engineering.

 

Modelling

Using virtual models, designers and bodywork specialists can analyse and compare different design options. Single parts as well as entire sub-assemblies can be assessed in terms of geometry, dimensions and form all in the digital domain.

FARO’s 3D portable measuring systems allow development engineers to move physical samples into the CAD realm to build virtual models for dimensional analysis, computational fluid dynamics (CFD) and finite element analysis (FEA). Virtual design testing can also be completed for failure modes and effects analysis (FMEA) and noise, vibration and harshness (NVH) analysis.

 

Crash Tests

Crash testing is performed to determine the dimensional impact on a vehicle or on some specific components when crashing an object at a given speed. Quality can be a matter of life or death and minimizing the impact of accidents e.g. with the aid of improved safety systems can be decisive for passenger survival.

FARO systems allow users to measure the entire vehicle before and after the crash. A comparison of the two sets of scanned data can then be performed by engineers to analyse and evaluate the dimensional impact of the crash.

Tests may be part of a R&D development cycle as the manufacturers look for ways to improve the quality of passive safety systems such as crumple zones, roll pillars and seat belts. But tests can also be carried out by test centres with the aim of providing objective assessments of component and car safety for OEMs or verifying and certifying that vehicles and parts meet regulatory requirements.

The FARO hardware and software are part of an efficient workflow in order to produce deformation reports or safety certificates with minimal effort.

 

Benchmarking – Analysis of Competitive Vehicles

The term “benchmarking” has been used to describe the process where one OEM evaluates the products of competitors such as entire vehicles, parts and assemblies. Automakers continue to look for any advantage they can find to stay ahead of their competition.

Rather than taking a select number of measurements on a given part, FARO solutions ensure complete part coverage with the possibility to digitize the entire object surface and generate a 3D CAD model.

FARO’s optical measurement systems allow users to seamlessly scan across diverse surface materials regardless of contrast, reflectivity or part complexity, and to capture intricate components in fine detail. The scan data enables an optimal understanding of the dimensional characteristics of the competitor’s products to be obtained. No time intensive pre-programming for single part capturing is needed.

 

Cubing inspection

Despite the availability of design data, companies are still using solid models in original size to analyse the characteristics of vehicles and individual components. The aim of Cubing is to bring parts and components together and evaluate how they fit each other. Once parts are mounted on a structure that replicate and simulate a real configuration, they can be measured and their reciprocal alignment checked and documented.

The solid model is based on a flexible frame with adjustable fixings, allowing a quick configuration of the car parts and components. Cubing inspection with the FARO solutions enables users to detect production issues early on in the development process of a vehicle so that problematic parts can be easily identified. This procedure is also particularly helpful for supplier support.

 

Reverse Engineering

The process of manufacturing special aftermarket accessories or customized components can benefit by using the FARO measurement systems as an ideal solution for reverse engineering the source vehicles. Design elements to be modified can be scanned using the FARO optical solutions in order to generate the CAD models that will then form the basis of the design activity.

Prototypes can be created, via traditional methods or 3D Printing and then attached to the source item and further checked by using the FARO solution to ensure that they match the CAD design drawings. Further modifications can be made to the physical prototype directly to improve the fit or enhance the design and then measured again to incorporate any changes into the CAD drawing.

Using the FARO augmented reality technology, digitally designed components can be easily compared, in the virtual domain, to real parts or physical mockups for the first design review and to check the fit.

Jan
24
2017

New FARO® Vantage Laser Tracker Product Line

FARO are delighted to announce the launch of the new Vantage Laser Tracker product line. The new FARO® Laser Tracker Vantage product family sets a new price/performance standard for addressing challenges in large-scale metrology including, but not limited to, assembly alignment, part and assembly inspection, machine installation and alignment, and reverse engineering.

vantage-final-gif-v2_banner_en

 
The FARO Vantage product family consists of two high performance models, the VantageE with an operating range of 25 meters and the VantageS with an operating range of 80 meters. Both compact models offer industry leading portability with an integrated master control unit (MCU), hot swappable batteries that eliminate the need for AC power and cabling, and industrial grade Wi-Fi for reliable, wireless communications. This set of advanced features, along with a single carrying case, enables easy transport between job sites and/or locations within the factory by a single user.

The FARO VantageS and VantageE Laser Trackers are extremely accurate, portable coordinate measuring machines that enable you to build products, optimize processes, and deliver solutions by measuring quickly, simply and precisely. These Laser Trackers optimize workflow productivity management for large-scale metrology applications including, but not limited to, assembly alignment, part and assembly inspection, machine installation and alignment, and reverse engineering.

Read More.

You can also view the full Press Release Here.

Jan
10
2017

Natural History Museum uses FARO 3D Scanners to replace their iconic Diplodocus

After 112 years, the Natural History Museum, London have decided to remove the iconic Dippy the Diplodocus. The specimen will be replaced with the real skeleton of a blue whale that was found on an Irish beach in 1891. Dippy will now embark on a UK tour around 8 venues.

dippy dinosaur

The FARO Focus was used by the team to capture the surface detail of the whole specimen while it was in a mounted position. The task was particularly difficult as the specimen was made up of many different components therefore multiple scans had to be taken from different angles. It took approximately two hours to scan the whole skeleton. The scan data will give scientists the opportunity to learn more about the skeleton and help conservators to move the dinosaur safely around the country.

In addition to this, the FARO ScanArm HD was used to scan the real bones belonging to the blue whale. The reason behind scanning the blue whale was that the Natural History Museum needs to have a digital representation of it should anything unanticipated happen to the real skeleton. The skeleton of the blue whale is one of a kind and almost invaluable. Consequently, the Natural History Museum needs to have as much information about it as possible as this would help them to repair or reconstruct it if it was ever damaged. This project is the first of a huge project that is planned between FARO and the Natural History Museum.

 

Read More.

 

Nov
21
2016

FARO UK Laser Technology Event

Rugby UK, 21st November 2016 – FARO Technologies, Inc. (NASDAQ: FARO): FARO UK are celebrating the successful debuts of two advanced new products at the FARO UK Laser Technology Event

FARO UK recently hosted a successful Laser Technology Event at the company’s impressive new, Rugby based headquarters. Visitors to the well-attended event were able to witness impressive demonstrations of the latest FARO technologies that are intended for large-volume surface inspection and large scale laser-guided assembly and production.

Launch event

New FARO laser innovations on display included the FARO VectorRI imaging laser radar, featuring the world’s only LIDAR with High Speed Imaging technology (HSI). The advanced VectorRI is an ultra-high speed, large-volume, non-contact 3D measurement solution with high-resolution 3D imaging and projection guidance for both manual and automated manufacturing processes.

In addition, the new FARO TracerM laser projector, intended for laser-guided assembly and production, was also demonstrated. Eliminating physical templates, the innovative new FARO product allows operators to quickly and accurately position components with absolute confidence.

Attendees from industries such as civil engineering, automotive and both rail and aerospace manufacturing were extremely impressed by the precise, large-volume capabilities of FARO’s advanced new technologies. FARO staff are now busy following-up the many leads generated at the event and performing on-site demonstration of the company’s new products.



FARO UK Blog

Stay up to date with the latest news and trends in industrial metrology and 3D documentation.

Subscribe to our Blog

FARO Local

Follow us:

Archives