Feb
02
2017

Digital Time Capsule of an Experimental Lighthouse

There are quite a number of structures unique to London: Big Ben, the London Eye, St. Paul’s Cathedral and Westminster Abbey, to name a few. But even the most ardent of Londoners may not be aware of their city’s one and only lighthouse, which has been unassumingly tucked away in London’s East End since 1864. Maybe the lighthouse’s lack of acclaim is due to the fact that it doesn’t serve as a lighthouse at all.  Or that it never has, actually. From the outset, Trinity Buoy Wharf Lighthouse served as an experimental hub for pioneering lighting techniques to be implemented in lighthouses and lightships along the entire coast of Great Britain. The lighthouse’s design and construction was the brainchild of Sir James Douglass, who is best known for his work on the fourth Eddystone lighthouse at Rame Head. But Douglass was far from the only eminent Briton to work at Trinity Buoy Wharf Lighthouse. When oil and gas lighting were deemed obsolete, Michael Faraday, best known for his discoveries in electromagnetism, was commissioned to create and test different designs for electric lighting and lenses. He even set up a workshop on-site to have direct access to test his ideas.

lighthouse london blog pic

Beyond boasting an impressive historical record, the lighthouse is also an extremely well-preserved example of Victorian architecture, making it the perfect subject for a new technique in heritage preservation. It is an all too common and devastating development when a structure, which once stood in pristine condition, falls into such disrepair that it can no longer be visited or recognised. Any record that would have been pre-emptively collected would likely have been limited to photographs, written documents and short videos, none of which allow a visitor to experience the structure as it once stood.

Taking advantage of recent advances in cutting edge technology, a team of visual and audio engineers aims to change this trajectory. Using a laser scanner, the team first captures the dimensions of the structure of interest. The data is converted into a 3D model which is then rendered into a virtual reality environment. Using a virtual reality headset, a user is able to effectively “step into” the structure as if walking around the actual site. Strategically placed audio clips inform the user of the structure’s history, so he or she is left with a very powerful, immersive sensory experience highlighting the structure’s beauty and historical context. The team hopes that the project will set a precedent for heritage preservation so that more people can explore a repository of heritage sites as they currently stand rather than after they have fallen derelict, scattered as fragments, overgrown and forgotten.

To create the digital model, Adrian (pictured) used the FARO 3D X130 tripod-mounted laser scanner to gather point cloud data at 2mm precision of the entire exterior and interior of the lighthouse and adjoining chain store. The efficiency of the scanning allowed a general scan to be obtained in less than 6 hours.  For the more detailed objects like the singing bowls in the picture, Adrian used a FARO Scanner Freestyle3D. It’s hand-held design allows the user to capture all sides of an object in a single sweep rather than through multiple re-adjustments of a static scanner. The smaller size of Freestyle 3D also allows accessibility into hard-to-reach nooks and crannies that might prove impossible to capture with a static scanner. The only downside is looking like you are performing new-age yoga while gathering data. But who really cares when the data come out so darn good?

Feb
01
2017

FARO solutions for inspection in R&D applications inside the automotive industry

FARO measurement technologies have been selected by leading automotive companies to support their production processes in different areas such as research and development, pre-production, production and digital factory & facility management.

In this brief blog post we will give you an overview of the research and development applications, the core of innovation processes and the backbone on which the success of a company in today’s hyper-competitive market depends on.

Automotive_vlcsnap-00004_reduced

 

Clay Studios – CNC Cutter Paths

If the creative act of determining and defining a car‘s form takes place prior to the physical production, clay studios must be used to generate data for CAD and CAM software, and CNC cutter paths for model machining.

Clay studios were one of the first in the automotive industry to implement scanning technology into their day-to-day processes to convert the physical model into CAD, which can then be used as a reference for all further developments.

The configurable FARO optical scanning solutions can easily be moved around the workshop and used to scan the entire surface of the model, quickly collecting all the necessary data for successive processing. Scanned data are also used to generate CNC cutter paths to allow subsequent machining or for reverse engineering.

 

Modelling

Using virtual models, designers and bodywork specialists can analyse and compare different design options. Single parts as well as entire sub-assemblies can be assessed in terms of geometry, dimensions and form all in the digital domain.

FARO’s 3D portable measuring systems allow development engineers to move physical samples into the CAD realm to build virtual models for dimensional analysis, computational fluid dynamics (CFD) and finite element analysis (FEA). Virtual design testing can also be completed for failure modes and effects analysis (FMEA) and noise, vibration and harshness (NVH) analysis.

 

Crash Tests

Crash testing is performed to determine the dimensional impact on a vehicle or on some specific components when crashing an object at a given speed. Quality can be a matter of life or death and minimizing the impact of accidents e.g. with the aid of improved safety systems can be decisive for passenger survival.

FARO systems allow users to measure the entire vehicle before and after the crash. A comparison of the two sets of scanned data can then be performed by engineers to analyse and evaluate the dimensional impact of the crash.

Tests may be part of a R&D development cycle as the manufacturers look for ways to improve the quality of passive safety systems such as crumple zones, roll pillars and seat belts. But tests can also be carried out by test centres with the aim of providing objective assessments of component and car safety for OEMs or verifying and certifying that vehicles and parts meet regulatory requirements.

The FARO hardware and software are part of an efficient workflow in order to produce deformation reports or safety certificates with minimal effort.

 

Benchmarking – Analysis of Competitive Vehicles

The term “benchmarking” has been used to describe the process where one OEM evaluates the products of competitors such as entire vehicles, parts and assemblies. Automakers continue to look for any advantage they can find to stay ahead of their competition.

Rather than taking a select number of measurements on a given part, FARO solutions ensure complete part coverage with the possibility to digitize the entire object surface and generate a 3D CAD model.

FARO’s optical measurement systems allow users to seamlessly scan across diverse surface materials regardless of contrast, reflectivity or part complexity, and to capture intricate components in fine detail. The scan data enables an optimal understanding of the dimensional characteristics of the competitor’s products to be obtained. No time intensive pre-programming for single part capturing is needed.

 

Cubing inspection

Despite the availability of design data, companies are still using solid models in original size to analyse the characteristics of vehicles and individual components. The aim of Cubing is to bring parts and components together and evaluate how they fit each other. Once parts are mounted on a structure that replicate and simulate a real configuration, they can be measured and their reciprocal alignment checked and documented.

The solid model is based on a flexible frame with adjustable fixings, allowing a quick configuration of the car parts and components. Cubing inspection with the FARO solutions enables users to detect production issues early on in the development process of a vehicle so that problematic parts can be easily identified. This procedure is also particularly helpful for supplier support.

 

Reverse Engineering

The process of manufacturing special aftermarket accessories or customized components can benefit by using the FARO measurement systems as an ideal solution for reverse engineering the source vehicles. Design elements to be modified can be scanned using the FARO optical solutions in order to generate the CAD models that will then form the basis of the design activity.

Prototypes can be created, via traditional methods or 3D Printing and then attached to the source item and further checked by using the FARO solution to ensure that they match the CAD design drawings. Further modifications can be made to the physical prototype directly to improve the fit or enhance the design and then measured again to incorporate any changes into the CAD drawing.

Using the FARO augmented reality technology, digitally designed components can be easily compared, in the virtual domain, to real parts or physical mockups for the first design review and to check the fit.

Jan
10
2017

Natural History Museum uses FARO 3D Scanners to replace their iconic Diplodocus

After 112 years, the Natural History Museum, London have decided to remove the iconic Dippy the Diplodocus. The specimen will be replaced with the real skeleton of a blue whale that was found on an Irish beach in 1891. Dippy will now embark on a UK tour around 8 venues.

dippy dinosaur

The FARO Focus was used by the team to capture the surface detail of the whole specimen while it was in a mounted position. The task was particularly difficult as the specimen was made up of many different components therefore multiple scans had to be taken from different angles. It took approximately two hours to scan the whole skeleton. The scan data will give scientists the opportunity to learn more about the skeleton and help conservators to move the dinosaur safely around the country.

In addition to this, the FARO ScanArm HD was used to scan the real bones belonging to the blue whale. The reason behind scanning the blue whale was that the Natural History Museum needs to have a digital representation of it should anything unanticipated happen to the real skeleton. The skeleton of the blue whale is one of a kind and almost invaluable. Consequently, the Natural History Museum needs to have as much information about it as possible as this would help them to repair or reconstruct it if it was ever damaged. This project is the first of a huge project that is planned between FARO and the Natural History Museum.

 

Read More.

 

Nov
15
2016

FARO® generates excitement at Intergeo with the newly released Focus S laser Scanner

At this year’s Intergeo in Hamburg, FARO® presented numerous new and enhanced products to its architecture, engineering and construction customers. Intergeo attendees were able to see first-hand the Laser Scanner FocusS Laser Scanner, the Freestyle3D Objects Handheld Scanner, SCENE, PointSense Software and the newly announced Mobil Mapping Solution, the Road Scanner C.

intergeo-1

Generating the most interest and enthusiasm was the new Laser Scanner FocusS which was the highlight at the FARO booth and was visualized on a big screen multiple times. The FocusS  is the most recent member of FARO’s popular laser scanner product line, which compliments the functionality of its latest Focus3D predecessors, adding several customer-centric features. An extended scanning range (150 m and 300 m), an extended operating temperature (-20° C to +55° C), the industry standard Ingress Protection (IP) rating classification IP54, an innovative accessory bay and a built-in compensation routine all provide AEC professionals with enhanced versatility and efficiency in the field. With a larger and luminous touch-screen the FocusS offers easy operation and its weight is more than 20% lighter in comparison to the previous generation models.

For precise scanning of mid-range measurement volume, FARO presented the new powerful Freestyle3D Objects Handheld Scanner as an Early Adopter Product to trade show visitors. Primarily designed for the Product Design market, the device also provides AEC professionals with a solution for 3D capturing medium-size MEP components and historical artifacts such as relics and sculptures. With a scanning range of 0.3 to 0.8 meter, the FARO Freestyle3D Objects captures scan data quickly in detailed colour and is suitable for different ambitious measurement tasks.

With the releases of FARO SCENE 6.2, customers could gain an insight into how the new on-site compensation tool is supported software based. Next to gaining information on the workflow of verifying and adjusting the scanner’s compensation parameters, customers learned how to generate a comprehensive compensation document automatically.

Trade show visitors that have been searching for solutions to efficiently process their laser scanning data, were able to see the introduction of the new PointSense Software programs. FARO has introduced new powerful tools for the modeling and alignment of building and plant components based on point cloud data, such as the new SmartSnap command in PointSense for AutoCAD and the extraction of MEP pipes in PointSense for Revit®.

Finally, attendees were amazed with the introduction of the new Road Scanner C, FARO’s first mobile mapping application, addressing customers in the infrastructure field with a state-of-the-art documentation solution. Realized as a joint project with the partner SITECO, FARO® will concentrate on the hardware sale.

Intergeo proved to be an extremely successful event for FARO which included three days on the trade show floor filled with positive customer feedback, numerous new contacts and insightful ideas for future product developments.

Nov
09
2016

FARO wins “Hardware Product of 2016” award at the Construction Computing Awards

It is with great pleasure that we can announce that the FARO Focus X330 won the award for the best hardware product of the year at the Construction Computing Awards 2016.

David Southam, Regional manager for Europe North collected the award on behalf of Faro Technologies and had the following to say, “It was a great pleasure to be nominated for this year’s best hardware category at the Hammers 2016, it was a fabulous evening with many of the key construction players represented at the awards.  The team and I had a really good night with superb entertainment and great networking opportunities.”

team photo

The winners of the 2016 Construction Computing Awards were announced at a gala event at BMA House in London. Over 180 supporting guests gathered to see the outcome of the readers’ online voting and judging panel’s deliberations.

FARO won the best hardware product of 2016 with the Faro Focus X330, a terrestrial 3D laser scanner specially designed for outdoor applications due its small size, light weight, extra long range, extended scanning possibilities even in direct sunlight and easy positioning with to the integrated GPS receiver.

To learn more about the FARO Focus laser scanner please click here.

Aug
29
2016

A glimpse into the future of digitalisation FARO 3D Conference 2016 at the Kraftwerk Rottweil

Rugby, United Kingdom, 9 June, 2016 – FARO Technologies, Inc. (NASDAQ:FARO), 3D technologies open up chances for industrial production, which have by no means been exploited to the full so far. Be it the mapping of existing facilities and buildings, measures for quality assurance or intelligent production planning and control – 3D technologies help to increase productivity and efficiency in all of these areas.

Experts and interested parties from all over Europe will be discussing future potential and practical experiences at the next FARO 3D Conference, which will take place on 3rd and 4th November 2016 at the Kraftwerk Rottweil. This networking event offers exclusive insight into the latest developments of the world’s leading provider of measurement and imaging technology. With talks, workshops and presentations, FARO wants to introduce the entire bandwidth of application possibilities of its hard and software products.

 

The conference participants can discover for themselves with the help of numerous hands-on training activities, just how simply and precisely 3D objects can be scanned and how quickly the data can be processed. Experienced users of the 3D technologies will highlight some best-practice examples and provide valuable tips and tricks for getting the most from the FARO product portfolio.

FARO specialists Dr. Bernd-Dietmar Becker, Chief Technology Strategist and Oliver Bürkler, Director Product Management, will take a look at the factory of the future in their visionary plenary lecture. “We provide the participants with an exciting overview of the latest product ideas from the FARO lab”, says Dr. Bernd Dietmar Becker, “and offer them a platform for discussing visionary ideas and strategies with experts and opinion leaders from the 3D arena.”

A ‘Call for Papers’ has been issued by the company so that interested parties can help to shape the 3D conference. The conference will be held in English.

More information can be found here.

 

 

Aug
25
2016

Westerhof BV

In recent years, modern machine factories have made a strong shift in professionalizing their measuring solutions. In particular engineering factories made for specialized industries such as automotive, Oil and Gas. The main reason is that these sectors constantly require new machinery to be integrated in existing production lines. Accuracy is always a key element in this engineering process, therefore, machine factories are making a shift from manual measurements to new solutions such as 3D laser measurement.

 

 

Westerhof BV is a versatile and modern machine factory that has been going strong in the Nether-lands for over 50 years. One of Westerhof ’s main tasks is the conceptualisation, creation and imple-mentation of new machinery in existing production lines. A high level of accuracy in the preliminary measurements is vital for the basis of a precise 3D model of the machine. In the past this was the main problem as all Westerhof ’s measurements for their 3D models were done manually.

“If that happens, we have to reengineer the entire machine, causing a large financial cost for both us and the client. Because if this, we looked for a solution that gave us perfect accuracy, to avoid these mistakes,” Thijs Lenferink, commercial technical advisor at Westerhof BV explains.

The engineers at Westerhof found this solution in the FARO Focus 3D X130 laser scanner and the FARO Gage, which were able to provide the accuracy that was required for their clients. “We did some market research and eventually chose the FARO Focus 3D X130 and the FARO® Gage for the creation of 3D models and gauging of existing machinery, due to their accuracy, high quality and user-friendliness,” Lenferink explains.

Read more

Jul
01
2016

3D documentation without CAD

FARO is expanding the possibilities of 3D laser scanning with a range of innovations. There is a clear trend towards making point clouds the focus of documentation applications.

Scanning on-site and immediately having a registered point cloud available on a mobile device – this has been a long-time dream of 3D laser scanning experts. Instead, one hour’s work in the field always meant several hours of office work to turn the scan data into usable data products. FARO Europe GmbH is now offering the possibility of registration in the field. Thanks to the new FARO® Scan Localizer, it is now possible to register scans on-site and in real time and thus generate a point cloud using equipment in the field. This add-on product is integrated into the Laser Scanner Focus3D tripod. It constantly performs 2D scans while also surveying the measuring environment within a horizontal profile covering approximately 180 degrees. It has a measuring range of up to 20 metres. The end result is a type of reference profile, which can be used to register the relevant scans from different locations within a single point cloud. This is all thanks to the cloud-to-cloud registration process, which has been a feature in SCENE for around two years. “It means that there is no longer any need for reference registration marks for overlapping areas in interior spaces,” says Oliver Bürkler, Director of Product Management at FARO. The intention is primarily to boost efficiency for projects with a high number of individual images. “We assume that it will generate significant cost advantages where there are 15 or more scans. For example, the device is absolutely indispensable when measuring interior spaces, where you often take more than a hundred scans,” Bürkler adds. According to the company, the FARO Scan Localizer is available as an add-on to the FARO Laser Scanner Focus3D (2015 model or later) and costs around 15,000 euros.

 

SCENE 1

The FARO Scan Localizer is affixed to the tripod. It carries out a horizontal 180-degree measurement that enables real-time positioning in interior spaces.

 

HDR integration

FARO has launched a number of innovations onto the market to further improve 3D laser scanning. This includes integrating high-dynamic-range (HDR) photography into the FARO Laser Scanner Focus3D. This new option lets you increase the resolution for images with significant differences in brightness. The HDR camera in the Focus3D X 130 HDR and 330 HDR models deliver 170 megapixels and offer a contrast range of up to 4 billion-to-1, which means that the respective bright areas can be optimally rendered for the human eye (i.e. for the screen). Bürkler describes a practical example: “Customers working in dark spaces, e.g. pipeline construction, can decipher even small labels, which are usually very light, in the point cloud”.

Closer to reality

A first glance at the new Version 6 of FARO’s point cloud software SCENE makes it very clear that it represents a new master release. The entire user interface has been redesigned and is now heavily based on typical workflows. Making the software easy and efficient to use was key. The work steps within the workflows are divided into clear, individual steps and are arranged in a logical sequence. All of the individual functions available in the previous version are now listed as processing options for the relevant processing steps in projects. The aim is to help users, especially those without extensive prior experience to get to grips with the system easier and faster. “When we developed the workflow-based tools, we defined typical use cases and automated them completely,” says Bürkler. In the event that manual intervention is needed, the software provides appropriate support and guidance. “This keeps the training required to an absolute minimum, which means that the learning time for new users is extremely short,”  the product manager said.  If anyone prefers the old interface for example, for dealing with complex, engineering-related technical issues they can easily switch back to the previous GUI.

Users will also find new rendering technology in SCENE 6 interesting. It delivers an even better level of visualisation for solid surfaces and eliminates the need for further data processing in visualisation applications.

“Solid surfaces now look completely realistic,” explains Bürkler. Conventional point cloud visuals have been transformed into fully immersive virtual reality environment. For example several new features ensure that the point cloud density for walls is interpolated so that the original, roughly rendered (“holey”) point clouds are automatically converted into closed surfaces. Colours are also homogenised in this way so that solid bodies or textures become significantly more realistic. This means that solid surfaces are not visualised using individual measuring points but rather as realistic, closed objects.

SCENE 2

New rendering features in the latest Version 6 of SCENE come in the form of closed surfaces: measuring points are turned into solid bodies to optimise the visualisation.

Ever more in the cloud

FARO insists that the benefits of this type of hyper-realistic point cloud are not just reserved for experts, thanks to the new version of its web hosting service SCENE WebShare Cloud. Being an online service it delivers significantly better performance, as well as being simpler and more user-friendly. All team members can now access documentation data quickly and easily without needing any special software or hardware. Each file is coded individually using the best encryption method available today (AEC 256), which guarantees the highest levels of IT security. In recent years, many customers have been sceptical about cloud applications for security reasons or have rejected them out of hand due to the massive volumes of data involved and the lack of fluid rendering. Nevertheless FARO confirmed that more and more customers are now using the cloud.

Consequently point clouds can be used for documentation-related tasks that were previously the reserve of CAD software. The advantage given that point clouds map complex local conditions, customers can dive into an existing environment ‘virtually’ for a more direct understanding of conditions on the ground. These features are used for example, by key FARO customers such as carmaker Volvo which documents all of its production facilities around the world using FARO scanners and uses these as the basis for further planning or new buildings. The company aims to have point clouds serve as the basis for all documentation applications leaving CAD for the virtual planning level only. This approach represents a paradigm shift since common practice today is still to translate point clouds into CAD models. A point cloud can now be enhanced with CAD functions to create a comprehensive 3D documentation IT landscape. “This will be the basis for future FARO developments,” predicts Oliver Bürkler.

Jun
16
2016

Focus3D scans the Sinaia Casino to deliver detailed 360° view in Webshare Cloud

The Casino in Sinaia, Romania was built at the initiative of King Carol I of Romania between 1912-1913. The Sinaia Casino was designed by the famous Romanian architect Petre Antonescu. The building is considered a historic monument and serves as an International Conference Centre. A detailed examination of the site’s current condition was required in order to lay down the restoration and preservation project. Therefore the 3D laser scanning method was chosen in order to carry out the survey of the monument. “Our task was to create a complete Building Information Management system in 2D (ground plans) and 3D (point cloud data) as soon as possible, so that planning and construction work will be based on reliable information. To do this, we deployed two expert teams.
One team was on site scanning with a FARO Focus3D laser scanner while the other team was processing the point cloud data” explains CEO International Partner Buro, Dipl. Ing. Marian Radoi.

3DLS_Sinaia_Casino_EN_3

“For complex projects as this the Focus3D offers many advantages. It is a non-invasive method of data collection, appropriate in case of surveying historic buildings. The large amount of data, obtained in a very short time, allows for the analysis of the current state of a monument. The great amount of captured details allows planning preservation and rehabilitation works, as well as monitoring the intervention in time.” says Dipl. Ing. Marian Radoi.

Read more

Apr
27
2016

Pompeii new secrets revealed

A new special of the BBC One show Pompeii: New Secrets Revealed with Mary Beard has helped uncover some myteries in Pompeii. This is one of the most iconic archaeological sites and with the use of the FARO Laser Scanner Focus3D unearthed the human stories behind the casts hidden underground.  The presenter of the show Mary Beard is a passionate TV historian who wanted to find out the truth the bodies underneath the ashes. This ancient city was destroyed by volcanic ash and pumice during the eruption of Mount Vesuvius in AD 79. Researchers were able to examine in detail the remains of bodies to find out more about how these people lived their lives thousands of years ago.

Picture_Pompeii_Video

The precise yet simple laser scanner is especially suited to the outdoors due to its small size and lightweight capabilities. The FARO Focus3D Laser scanner was able to perform the most detailed scan of the archaeological site and was shown on the BBC One show for the world to see. The Focus3D can create a precise, virtual copy of the scanned objects at millimetre accuracies in only minutes by capturing up to 976,000 data points per second. Estelle Lazer from the University of Sydney was able along with her team to help Mary unpick the remains which are preserved in Pompeii.

ScanLABProject Pompeii New Secrets Revealed  on Vimeo.



FARO UK Blog

Stay up to date with the latest news and trends in industrial metrology and 3D documentation.

Subscribe to our Blog

FARO Local

Follow us:

Archives