Jul
24
2017

ARENA2036

To celebrate the 150th anniversary of the motor car in 2036, FARO along with other key stakeholders have formed a private partnership named ARENA2036.  The main objective of ARENA2036 is to prepare the the way for the automotive production of the future in order.

The factory of the future must be able to optimise itself in order to be more flexible and agile than the current rigid production lines. FARO innovation manager, Dr. Denis Wohfeld is organising the Digital Shadow project which involves an updated actual model of reality that can enable the planning and simulation of the factory of the future.  He believes that this can be done by having sensors that scan the shop floor and also access the IT systems from the whole network and hardware installations. This will allow the data to flow together to form one model, a virtual representation of the entire factory.

In order for the factory to evolve with Industry 4.0, expert measuring and imaging technology to support the reshaping of production processes and working environments is required. FARO offers a wide variety of high precision solutions including tactile measuring arms and laser scan technology for the non-contact recording of objects. In addition to the measuring technology, FARO also offers various software solutions that provide a platform for integrated communication between all measuring systems as well as interfaces to all common software applications. This allows users to record measured data very quickly in multi-sensory mode, helping organisations to cut costs for system integration.

The technology that FARO provides can strengthen companies at wage-intensive locations and therefore secure jobs. Moreover, by relieving employees of monotonous routine tasks that can be hazardous to their health, freedom is created for areas of work that requires their creativity such as product development.

Read More.

Jun
23
2017

3D Scanner Company of the Year

We are delighted to inform you that FARO has won the award for the 3D scanner company of the year !

“Given the standard of our fellow nominees competing for the prestigious 3D scanner company of the year award, we were delighted with our success,” enthused Dave Southam, Regional Manager Europe North at FARO Technologies. “As FARO scanners are particularly suited to the demands of the 3D printing industry our sales in this exciting global sector continue to grow at a phenomenal rate.

 

Read More.

May
12
2017

FARO’s Speed and Accuracy aids Rail Project

The use of a FARO Focus3D X 330 Laser Scanner helps to ensure the delivery of precise precast concrete structural elements to the Ordsall Chord project, part of Network Rail’s £1bn+ railway upgrade plan for the North of England.

A joint venture between Skanska BAM Nuttall is currently involved in delivering the Ordsall Chord, part of the Great North Rail Project to improve railway services. The project will help to increase connectivity across towns and cities and enable the Government’s so-called Northern Powerhouse initiative to boost economic growth in the North of England.

Since October 2015, work has been taking place on the Ordsall Chord.  This new section of track will create a link between Manchester city centre’s main train stations; Victoria, Oxford Road and Manchester Piccadilly, for the first time.  However, for this vital piece of track to be fitted, a huge amount of preparatory work needs to take place.  This includes realigning existing track-, building new bridges, removing disused arches and restoring Grade I listed structures related to what is a section of the world’s first passenger railway.

The delivery of incorrectly sized precast concrete elements had the potential to cause long delays to the Ordsall Chord project and to disrupt road and rail travel. To help eliminate this possibility a fool-proof system of laser scanning the critical structural elements has been adopted.

Dan Binney, Skanska BAM, Senior Engineering Surveyor explained. “Work on the Ordsall Chord involves reconfiguring the existing railway between Eccles and Deansgate, Eccles and Manchester Victoria and Deansgate and Salford Crescent stations. Other work includes the installation of two new bridges, the renovation of an existing bridge, the widening of a viaduct and establishing a new track lay out.

“The track changes will allow the 300 metre chord, a brand new section of railway, to connect with the new layout. As part of the project, a range of large, precast concrete, structural elements are manufactured off-site. Although we are able to make on-site adjustments to accommodate very minor size discrepancies, the delivery of precast structures that fall outside our specified dimensional tolerances would render them useless and cause massive time delays.

Apr
27
2017

Inno-Tech Days Oxford 2017

The next FARO Inno-Tech Days event will be held on the 18th May 2017 at the Science and Technologies Facilities Council in Oxford.

 

On display will be a wide range of our latest innovations including:

– the longest range and most accurate laser projector ever – the FARO Tracer M
– the truly mobile FARO FocusLaser Scanner for fast, secure and reliable scanning
– the recently launched mobile remote controlled Vantage S and Vantage E Laser Trackers with hot swappable batteries
– our latest robot-compatible automation solution – the FARO Cobalt Array Imager 

 

AGENDA:

09.00 – 10.00 Welcome and Introduction
10.00 – 11.00 Presentation of FARO
11.00 – 12.00 Free demo sessions
12.00 – 13.00 Latest FARO innovations
13.00 – 13.30 Lunch
13.30 – 14.30 Free demo sessions
14.30 – 15.15 Presentation of more FARO innovations
15.15 – 16.00 Free demo sessions

 

To register please Click Here.

Apr
19
2017

Eurosia and FARO: the perfect mix of BIM services and 3D Laser Scanning

Eurosia S.A. is a European group delivering BIM solutions to the AEC and EPC sectors in the Benelux, France, the UAE and the UK. The main goal of Eurosia as a company is to provide surveyors, general and MEP contractors with accurate BIM models to use in construction or renovation projects. The need for BIM modeling is constantly increasing with regard to construction or renovation projects.

Cedric Brusselmans, co-founder of Eurosia explains the problem they wish to solve: “The main challenge that we observe in various countries such as the Benelux and France – is that they consist mainly of medium to small companies of surveyors. This means that if they have to create a 3D model based on a point cloud, they may lose time, thus decreasing their productivity and revenue. In fact, while spending time on creating the 3D model, the surveyor may not be able to accept new projects. Our team try to take that burden away from them. Surveyors deliver us the point cloud and we create a full 3D model for them according to their specifications.”

In the process of Eurosia, surveyors can either upload their point cloud to the Eurosia server or Eurosia organizes a courier service to pick up the surveyor’s USB stick or mini-hard drive containing the point cloud within 24 hours (for point clouds that are too big in size – above 10 GB – and cannot be sent via usual channels). They then indicate which types of deliverables they would like to acquire. There will be a conversation between the surveyors and Eurosia’s project manager to ensure that standards, specifications and scope of work are matching with the requirement.  As Eurosia is taking care of the BIM model creation, surveyors can focus on their core business. Eurosia also offers 3D animation (virtual reality) services: such animation shows the building in its future state and actual environment.

Mr. Brusselmans explains: “We started this journey with FARO when we were exhibiting next to them at a trade fair in France. Naturally you start talking to your trade fair neighbors. Our respective teams saw the added value of each other’s solution. Following this event, we requested a meeting with FARO to show their different products. It was at that time we both saw that there was a connection between our services and that the combination could provide a great solution for surveyor companies. As a whole, a laser scanner is the opening door to many. This combination can also improve project efficiency for construction and installation companies.”

Eurosia sees itself working in collaboration with companies such as FARO to ensure that they can provide a good service level and adequate support to their clients. Once a BIM model and the BIM process is in place for a project, the collaboration among the different stakeholders can be smoother and more efficient. They all have the same data from the BIM model (drawings and measurements), which decreases the number of mistakes in construction and ultimately avoids extra costs and waste of time for all stakeholders.

Mar
03
2017

Scan2Print

FARO, 3D Systems and Canon 3D Printing, will be co-hosting a Scan2Print event on Thursday 4th May 2017.

Taking place at the Canon Open Experience Centre, Uxbridge. the free event’s program will focus on the exciting opportunities delivered by the latest 3D Printing and 3D Scanning technologies, to enhance the efficiency of product design processes.

Real life customer examples will illustrate how informed manufacturers, engineers, and product designers are combining 3D Scanning and 3DPrinting to achieve record levels of productivity, efficiencies, and cost-reductions.

FARO’s advanced 3D solutions enables fully digital workflows by capturing real world geometry for the purposes of empowering design. The company’s advanced technologies allow innovations to be realised, faster design cycles to be completed, and not least, they enable users to become more competitive.

 

Date: 4th May 2017
Time: 9:30am – 2pm
Location: Canon Open Experience Centre, Uxbridge

 

Click here to view the Agenda.

Register here.

 

Feb
01
2017

FARO solutions for inspection in R&D applications inside the automotive industry

FARO measurement technologies have been selected by leading automotive companies to support their production processes in different areas such as research and development, pre-production, production and digital factory & facility management.

In this brief blog post we will give you an overview of the research and development applications, the core of innovation processes and the backbone on which the success of a company in today’s hyper-competitive market depends on.

Automotive_vlcsnap-00004_reduced

 

Clay Studios – CNC Cutter Paths

If the creative act of determining and defining a car‘s form takes place prior to the physical production, clay studios must be used to generate data for CAD and CAM software, and CNC cutter paths for model machining.

Clay studios were one of the first in the automotive industry to implement scanning technology into their day-to-day processes to convert the physical model into CAD, which can then be used as a reference for all further developments.

The configurable FARO optical scanning solutions can easily be moved around the workshop and used to scan the entire surface of the model, quickly collecting all the necessary data for successive processing. Scanned data are also used to generate CNC cutter paths to allow subsequent machining or for reverse engineering.

 

Modelling

Using virtual models, designers and bodywork specialists can analyse and compare different design options. Single parts as well as entire sub-assemblies can be assessed in terms of geometry, dimensions and form all in the digital domain.

FARO’s 3D portable measuring systems allow development engineers to move physical samples into the CAD realm to build virtual models for dimensional analysis, computational fluid dynamics (CFD) and finite element analysis (FEA). Virtual design testing can also be completed for failure modes and effects analysis (FMEA) and noise, vibration and harshness (NVH) analysis.

 

Crash Tests

Crash testing is performed to determine the dimensional impact on a vehicle or on some specific components when crashing an object at a given speed. Quality can be a matter of life or death and minimizing the impact of accidents e.g. with the aid of improved safety systems can be decisive for passenger survival.

FARO systems allow users to measure the entire vehicle before and after the crash. A comparison of the two sets of scanned data can then be performed by engineers to analyse and evaluate the dimensional impact of the crash.

Tests may be part of a R&D development cycle as the manufacturers look for ways to improve the quality of passive safety systems such as crumple zones, roll pillars and seat belts. But tests can also be carried out by test centres with the aim of providing objective assessments of component and car safety for OEMs or verifying and certifying that vehicles and parts meet regulatory requirements.

The FARO hardware and software are part of an efficient workflow in order to produce deformation reports or safety certificates with minimal effort.

 

Benchmarking – Analysis of Competitive Vehicles

The term “benchmarking” has been used to describe the process where one OEM evaluates the products of competitors such as entire vehicles, parts and assemblies. Automakers continue to look for any advantage they can find to stay ahead of their competition.

Rather than taking a select number of measurements on a given part, FARO solutions ensure complete part coverage with the possibility to digitize the entire object surface and generate a 3D CAD model.

FARO’s optical measurement systems allow users to seamlessly scan across diverse surface materials regardless of contrast, reflectivity or part complexity, and to capture intricate components in fine detail. The scan data enables an optimal understanding of the dimensional characteristics of the competitor’s products to be obtained. No time intensive pre-programming for single part capturing is needed.

 

Cubing inspection

Despite the availability of design data, companies are still using solid models in original size to analyse the characteristics of vehicles and individual components. The aim of Cubing is to bring parts and components together and evaluate how they fit each other. Once parts are mounted on a structure that replicate and simulate a real configuration, they can be measured and their reciprocal alignment checked and documented.

The solid model is based on a flexible frame with adjustable fixings, allowing a quick configuration of the car parts and components. Cubing inspection with the FARO solutions enables users to detect production issues early on in the development process of a vehicle so that problematic parts can be easily identified. This procedure is also particularly helpful for supplier support.

 

Reverse Engineering

The process of manufacturing special aftermarket accessories or customized components can benefit by using the FARO measurement systems as an ideal solution for reverse engineering the source vehicles. Design elements to be modified can be scanned using the FARO optical solutions in order to generate the CAD models that will then form the basis of the design activity.

Prototypes can be created, via traditional methods or 3D Printing and then attached to the source item and further checked by using the FARO solution to ensure that they match the CAD design drawings. Further modifications can be made to the physical prototype directly to improve the fit or enhance the design and then measured again to incorporate any changes into the CAD drawing.

Using the FARO augmented reality technology, digitally designed components can be easily compared, in the virtual domain, to real parts or physical mockups for the first design review and to check the fit.

Jan
10
2017

Natural History Museum uses FARO 3D Scanners to replace their iconic Diplodocus

After 112 years, the Natural History Museum, London have decided to remove the iconic Dippy the Diplodocus. The specimen will be replaced with the real skeleton of a blue whale that was found on an Irish beach in 1891. Dippy will now embark on a UK tour around 8 venues.

dippy dinosaur

The FARO Focus was used by the team to capture the surface detail of the whole specimen while it was in a mounted position. The task was particularly difficult as the specimen was made up of many different components therefore multiple scans had to be taken from different angles. It took approximately two hours to scan the whole skeleton. The scan data will give scientists the opportunity to learn more about the skeleton and help conservators to move the dinosaur safely around the country.

In addition to this, the FARO ScanArm HD was used to scan the real bones belonging to the blue whale. The reason behind scanning the blue whale was that the Natural History Museum needs to have a digital representation of it should anything unanticipated happen to the real skeleton. The skeleton of the blue whale is one of a kind and almost invaluable. Consequently, the Natural History Museum needs to have as much information about it as possible as this would help them to repair or reconstruct it if it was ever damaged. This project is the first of a huge project that is planned between FARO and the Natural History Museum.

 

Read More.

 

Nov
15
2016

FARO® generates excitement at Intergeo with the newly released Focus S laser Scanner

At this year’s Intergeo in Hamburg, FARO® presented numerous new and enhanced products to its architecture, engineering and construction customers. Intergeo attendees were able to see first-hand the Laser Scanner FocusS Laser Scanner, the Freestyle3D Objects Handheld Scanner, SCENE, PointSense Software and the newly announced Mobil Mapping Solution, the Road Scanner C.

intergeo-1

Generating the most interest and enthusiasm was the new Laser Scanner FocusS which was the highlight at the FARO booth and was visualized on a big screen multiple times. The FocusS  is the most recent member of FARO’s popular laser scanner product line, which compliments the functionality of its latest Focus3D predecessors, adding several customer-centric features. An extended scanning range (150 m and 300 m), an extended operating temperature (-20° C to +55° C), the industry standard Ingress Protection (IP) rating classification IP54, an innovative accessory bay and a built-in compensation routine all provide AEC professionals with enhanced versatility and efficiency in the field. With a larger and luminous touch-screen the FocusS offers easy operation and its weight is more than 20% lighter in comparison to the previous generation models.

For precise scanning of mid-range measurement volume, FARO presented the new powerful Freestyle3D Objects Handheld Scanner as an Early Adopter Product to trade show visitors. Primarily designed for the Product Design market, the device also provides AEC professionals with a solution for 3D capturing medium-size MEP components and historical artifacts such as relics and sculptures. With a scanning range of 0.3 to 0.8 meter, the FARO Freestyle3D Objects captures scan data quickly in detailed colour and is suitable for different ambitious measurement tasks.

With the releases of FARO SCENE 6.2, customers could gain an insight into how the new on-site compensation tool is supported software based. Next to gaining information on the workflow of verifying and adjusting the scanner’s compensation parameters, customers learned how to generate a comprehensive compensation document automatically.

Trade show visitors that have been searching for solutions to efficiently process their laser scanning data, were able to see the introduction of the new PointSense Software programs. FARO has introduced new powerful tools for the modeling and alignment of building and plant components based on point cloud data, such as the new SmartSnap command in PointSense for AutoCAD and the extraction of MEP pipes in PointSense for Revit®.

Finally, attendees were amazed with the introduction of the new Road Scanner C, FARO’s first mobile mapping application, addressing customers in the infrastructure field with a state-of-the-art documentation solution. Realized as a joint project with the partner SITECO, FARO® will concentrate on the hardware sale.

Intergeo proved to be an extremely successful event for FARO which included three days on the trade show floor filled with positive customer feedback, numerous new contacts and insightful ideas for future product developments.

Nov
09
2016

FARO wins “Hardware Product of 2016” award at the Construction Computing Awards

It is with great pleasure that we can announce that the FARO Focus X330 won the award for the best hardware product of the year at the Construction Computing Awards 2016.

David Southam, Regional manager for Europe North collected the award on behalf of Faro Technologies and had the following to say, “It was a great pleasure to be nominated for this year’s best hardware category at the Hammers 2016, it was a fabulous evening with many of the key construction players represented at the awards.  The team and I had a really good night with superb entertainment and great networking opportunities.”

team photo

The winners of the 2016 Construction Computing Awards were announced at a gala event at BMA House in London. Over 180 supporting guests gathered to see the outcome of the readers’ online voting and judging panel’s deliberations.

FARO won the best hardware product of 2016 with the Faro Focus X330, a terrestrial 3D laser scanner specially designed for outdoor applications due its small size, light weight, extra long range, extended scanning possibilities even in direct sunlight and easy positioning with to the integrated GPS receiver.

To learn more about the FARO Focus laser scanner please click here.



FARO UK Blog

Stay up to date with the latest news and trends in industrial metrology and 3D documentation.

Subscribe to our Blog

FARO Local

Follow us:

Archives