Jul
07
2017

Sacred Scanning Interiors

Toward the end of last summer, after he had finished his scans of Baroque churches in Rome and Turin and was back in his Meyerson Hall office, Andrew Saunders began sending massive batches of data to the cloud. He had scanned the interiors of each sumptuous church from multiple vantages, using a top-of-the-line LiDAR (Light Detection And Ranging) scanner. At the high-resolution setting he used, each scan comprised about 15 million points, with less than a centimeter separating each point. The trick was to get all the scans to mesh together, without overlaps or gaps.
“We’d send 200 million points to the cloud—up to 90 gigabytes—and two or three days later, we’d get back an email” from Autodesk, a California-based software firm, recalls Saunders, an associate professor of architecture. “One time it has a smiley face and says, ‘Congratulations! Your mesh worked. You can download it.’ Other times, after two days you get a frown face that says, ‘Sorry, it didn’t work.’ It’s really kind of a blind process.”
But once they meshed, he says: “All of a sudden you’re seeing these churches as nobody’s ever seen them before.”
 
Space may seem infinite, ubiquitous, even timeless.But confine it to the interior of a soaring, wildly complex Baroque
structure—say, Guarini’s Church of San Lorenzo in Turin—and it becomes, in the right hands, with the right technology, something else altogether.
“It’s essentially an argument for space as an object,” says the 42-year-old Saunders, who speaks openly and quickly, with a certain professional dryness. That argument is at the heart of his Baroque Topologies project, which he unveiled at Charles Addams Hall last winter, and which he is now writing up in book form. (Publication details are still being worked out.)
Even the term space, as a component of architecture, is relatively new, he points out. “Frank Lloyd Wright in the ’20s was the first one to really use it. It’s kind of a contemporary concept, and I think it’s continuing to change.”
For those inclined to regard space as an object as gaseous academic theory, consider this: you can, with the right technology, print out the objectified space on a 3D printer. (On a reduced scale, of course, which is a good thing for any building housing that printer.) It’s the equivalent of filling each church to the top with Jell-O, shrinking it down to a tiny fraction of its original size, and removing it. Except that Saunders’ translucent photopolymer resin molds have far more detail and articulation, right down to the non-space that had been occupied by altar cherubs and high-flying angels.

On the computer screen, these digital renderings are protean, morphing at the click of a mouse from solid 3D printouts to

ghostly X-rays to a sort of internal death mask. They are also strange and toothsome eye candy.
The images “force us to see complex buildings with fresh eyes,” says Joseph Connors, a professor of art history and architecture at Harvard who specializes in the Italian Renaissance and Baroque. “Their beauty and their strangeness shock us into new recognitions of buildings we thought were familiar. They reify space, making it into a sculpted substance in which the contained takes on life, even when the enclosing container is peeled away.
The buildings always had a strange beauty, but now they have shock value too,” he adds. “It is as though the familiar bust of Homer on our desk were suddenly replaced by the brain of Homer.” At times, the freshness borders on hallucination. One rendering brings to mind an ornate Japanese robot. Another suggests a rococo decanter. A third, an exquisitely decorated fire hydrant. “It’s something that leaves us curious, excited, and perplexed at the same time,” says Guido Zuliani, an architect who teaches at the Chanin School of Architecture at Cooper Union. “Because it’s all new, and because of the beauty of these things, it may be deceiving, but there is an intellectual chain—in terms of the Baroque, in terms of architectural analysis, and in terms of a different model of understanding an architectural object.”
Unlike Renaissance or Modernist architecture, the Baroque is “so completely complex,” says Saunders. “It has so much articulation. It’s always about blurring thresholds between painting, sculpture, architecture, the city.” In a recent talk, he described the space of Baroque interiors as a “maelstrom of pressure and forces with a paradoxical desire of purely mathematical speculation and religious mysticism bound in a taut envelope.”
Connors paints an eloquent picture of what we perceive when we enter, for example, Bernini’s Sant’ Andrea al Quirinale and gaze upwards: “the dome we see is a fiction of superimposed structures: ribs inside coffers that diminish perspectivally to
expand the surface that covers us.” Saunders’ models, he explains, not only show such vaults “with the clarity of a high-resolution photograph, but they also show the space the dome contains. We have the illusion that we can run our hands over space and feel its contours and inflections.” For Saunders, those “deep, withdrawn, interior spaces are really amazing to study because they’re so cut off from the exterior.”
“They’re just their own sort of worlds,” he adds. “Any kind of light, even natural light, is usually indirect or very far or bouncing back.
You never get a direct view out of them—they’re just kind of deep chasms that you enter into.”
Before traveling to Italy last summer, Saunders flew to Florida for a training session on the FARO Laser Scanner Focus 3D X 130, which can scan at nearly a million points per second and has a range of 130 meters.
“I found that it’s being used mostly in criminology and surveying,” he says. “In architecture and historic preservation, it’s used to look at a very specific piece, not an entire building.”
Had he been forced to buy the scanner, it would have wiped out the entire $50,000 University Research Fund grant he had procured to cover his expenses in Italy. Fortunately, FARO agreed to lend him one for a month, gratis.
Autodesk also allowed him to use, among other things, its ReCap (for Reality Capture) and ReMake software. Without their ability to generate high-resolution meshes, he says, he never would have been able to make the renderings.
“Autodesk has been a huge, huge help,” he adds. “Right now this is a very big realm, not just for Baroque historical analysis—which it is but even for the industry: engineering, architecture. Because they’re trying to figure out how to work with this large amount of data within their typical tools for making construction documents or representation. The stuff that we’re doing wasn’t even possible to do
weeks ago. We’re working with Autodesk and changing the algorithms for how they’re processing all of this stuff.”
Autodesk was thinking mainly of industrial designers and engineers when it started its cloud computing service, he explains. “They’re scanning a lot of infrastructure, oil platforms, things with a huge number of pipes and services, and they want to make sure that what- ever new thing they’re putting in doesn’t collide with anything. So they scan them and make them into meshes, and use them for collision detection. Then all of a sudden 18 Baroque churches start rolling through. And they’re like, What is this stuff? They got really interested.”
Tatjana Dzambazova, Autodesk’s senior product manager and “technology whisperer,” confirms that when she and her colleagues “started making the tech, we were thinking of architects, engineers, contractors.” But, she adds, “disruptors like Andrew show us that when smart, curious, caring people are given new technological tools, they think of ways they can push the boundaries of their profession, which so often go beyond what we, the makers of that same tech, ever had in mind.”
During his time in Rome,  Saunders focused mainly on the churches of Borromini, Bernini, Cortona, and Rinaldi. Then he headed north to Turin, where Guarini represented a “natural progression from Borromini, about 50 to 100 years later,” he explains. The progression “basically charts an evolution of the Baroque central plan in High Baroque from 1600 to 1700 in Rome, and then 1700 to 1750 in Turin.”
One doesn’t just wander into those venerable edifices and start scanning, though. Permission requires supplicating local and national layers of state and church bureaucracy. “That was one of the most challenging aspects,” he admits. “It started slowly, but then I started to make really good contacts and was able to access quite a few.” By the time he left Rome, he had been able to scan most of its important Baroque churches, apart from those in security-crazed Vatican City. One morning, at the Church of San Giovanni dei Fiorentini in Rome, he made his way into a tiny underground crypt—the Falconiere Crypt—designed by Borromini.
“Not many people know about it,” he says. “You have to go into this two-foot passageway to get down there. So I went down into it, and I scanned it, and I came back out.”
Tried to, anyway. By then a “full-on mass” was under way.
“I just couldn’t come out with my scanner in the middle of mass,” he says. “There was no way to escape. So I spent the entire mass underground in this crypt. It was very small, and kind of creepy.”
Back in the old days of scanning —say, two or three years ago—“people had to use physical targets,” Saunders explains. “You would have to plant spheres around the site, or targets that you would pin up on walls. When you came back to register the scans, or composite them together so that they overlapped, you would have to find the spheres yourself and kind of stitch the pieces back together. But now the software and algorithms have gotten so advanced that they can find patterns and automatically register
and scan and put everything together.”
Even so, “in the case of someone like Bernini, where there’s so much figuration and columns within columns, you could scan for days and still miss parts,” he acknowledges. “So one of the things my research assistant [Ariel Cooke-
Zamora GAr’19] has been doing is patching and cleaning up all these areas.”
In Cooke-Zamora’s view, the Baroque Topologies project has transformed laser scanning “from a surveying tool to a
representational one,” with serious benefits for architecture students.
“I’m very lucky to have been one of the first people to see these churches in this way,” he says. “Orbiting around the point cloud grants the viewer perspectives that have never been seen—not even by the architect himself.”
Connors compares some of Saunders’ digital renderings to certain “astounding drawings” by Borromini, which “give us
the impression that we are seeing through structures as in an X-ray.” This same quality, he adds, “is evident when we see, in Saunders’ models, [Borromini’s] buildings as though they had turned to glass and we could look through them as we fly above them. They are images that grab us by the shoulders and shake us into new perceptions of Baroque architecture.”
When he taught a graduate seminar on Baroque architecture this past spring, Saunders and his high-tech renderings were able to address a longstanding problem for students of the genre. The architects left no blueprints behind, and had often improvised as they went along. As a result, he says, any plans they did draw up usually “have little to do with what actually gets built.” True, there are plenty of photographs to study, but those two-dimensional representations seldom capture the full three-dimensional realities.
“Oftentimes I found that an architectural drawing of, say, Bernini’s Sant’ Andrea al Quirinale did not match the existing form of the church,” says Cooke-Zamora. And until now, “a student doing a formal analysis of these works would have had to model the space using existing—often scarce or inaccurate—reference images.”
“We went from students finding four or five photographs and squinting at them, trying to figure out what the three-dimensionality is, to printing fragments by someone like Vittone—not having to visualize; just 3D-printing it, like they’re printing pieces of this church to analyze,” says Saunders. “It’s kind of mind-blowing.”
The scans make for a “night-and-day difference,” he adds. “Within two weeks, the students really know the difference between Cortona, Rinaldi, Borromini.”
“One thing I saw in some of the work of Andy’s seminar was the possibility to deconstruct the object differently, to understand differently the layers and strata of this kind of activation of space,” says Guido Zuliani. “The work raises the possibility of taking certain moldings or decorations and analyzing them separately from the rest of the building with incredible precision, which will elimi-
nate some of the ambiguities or guessing that is normally done.
“It is a little bit early to understand the range of possibilities,” he adds, “but the range is really big.”
For Saunders, teaching the only course in PennDesign’s Master of Architecture sequence that covers architectural history before 1850—and doing it with laser scans and 3D printouts—is a rewarding kind of time warp.
“I enjoy that,” he says simply. “It’s very Baroque.”
Jun
23
2017

3D Scanner Company of the Year

We are delighted to inform you that FARO has won the award for the 3D scanner company of the year !

“Given the standard of our fellow nominees competing for the prestigious 3D scanner company of the year award, we were delighted with our success,” enthused Dave Southam, Regional Manager Europe North at FARO Technologies. “As FARO scanners are particularly suited to the demands of the 3D printing industry our sales in this exciting global sector continue to grow at a phenomenal rate.

 

Read More.

Jun
07
2017

FARO Tracer M Laser Projector for Factory Metrology

FARO has recently launched the Tracer M Laser Projector. This new solution allows users to reduce the expensive delays associated with the alignment and assembly of large components, help improve process precision, and negate the need for physical templates and hard tooling.

The Tracer M uses Advanced Trajectory Control (ATC) to deliver fast projection. ATC provides superior dynamic accuracy and a rapid refresh rate which minimizes flicker. Photogrammetric targets are used to enable the best fit alignment of the projected image onto the surface or object, thereby allowing the projected image to be consistent with the CAD model.

For larger assemblies and for use in space-constrained areas, multiple Tracer M projectors can be controlled from a single workstation to provide large-scale virtual templates in one coordinate system. The risk of human error and costly scrap during assembly is significantly reduced, in addition, manufacturers are able to avoid the time and expense associated with using large, heavy templates.

 

Read More.

May
12
2017

FARO’s Speed and Accuracy aids Rail Project

The use of a FARO Focus3D X 330 Laser Scanner helps to ensure the delivery of precise precast concrete structural elements to the Ordsall Chord project, part of Network Rail’s £1bn+ railway upgrade plan for the North of England.

A joint venture between Skanska BAM Nuttall is currently involved in delivering the Ordsall Chord, part of the Great North Rail Project to improve railway services. The project will help to increase connectivity across towns and cities and enable the Government’s so-called Northern Powerhouse initiative to boost economic growth in the North of England.

Since October 2015, work has been taking place on the Ordsall Chord.  This new section of track will create a link between Manchester city centre’s main train stations; Victoria, Oxford Road and Manchester Piccadilly, for the first time.  However, for this vital piece of track to be fitted, a huge amount of preparatory work needs to take place.  This includes realigning existing track-, building new bridges, removing disused arches and restoring Grade I listed structures related to what is a section of the world’s first passenger railway.

The delivery of incorrectly sized precast concrete elements had the potential to cause long delays to the Ordsall Chord project and to disrupt road and rail travel. To help eliminate this possibility a fool-proof system of laser scanning the critical structural elements has been adopted.

Dan Binney, Skanska BAM, Senior Engineering Surveyor explained. “Work on the Ordsall Chord involves reconfiguring the existing railway between Eccles and Deansgate, Eccles and Manchester Victoria and Deansgate and Salford Crescent stations. Other work includes the installation of two new bridges, the renovation of an existing bridge, the widening of a viaduct and establishing a new track lay out.

“The track changes will allow the 300 metre chord, a brand new section of railway, to connect with the new layout. As part of the project, a range of large, precast concrete, structural elements are manufactured off-site. Although we are able to make on-site adjustments to accommodate very minor size discrepancies, the delivery of precast structures that fall outside our specified dimensional tolerances would render them useless and cause massive time delays.

Apr
27
2017

Inno-Tech Days Oxford 2017

The next FARO Inno-Tech Days event will be held on the 18th May 2017 at the Science and Technologies Facilities Council in Oxford.

 

On display will be a wide range of our latest innovations including:

– the longest range and most accurate laser projector ever – the FARO Tracer M
– the truly mobile FARO FocusLaser Scanner for fast, secure and reliable scanning
– the recently launched mobile remote controlled Vantage S and Vantage E Laser Trackers with hot swappable batteries
– our latest robot-compatible automation solution – the FARO Cobalt Array Imager 

 

AGENDA:

09.00 – 10.00 Welcome and Introduction
10.00 – 11.00 Presentation of FARO
11.00 – 12.00 Free demo sessions
12.00 – 13.00 Latest FARO innovations
13.00 – 13.30 Lunch
13.30 – 14.30 Free demo sessions
14.30 – 15.15 Presentation of more FARO innovations
15.15 – 16.00 Free demo sessions

 

To register please Click Here.

Apr
19
2017

Eurosia and FARO: the perfect mix of BIM services and 3D Laser Scanning

Eurosia S.A. is a European group delivering BIM solutions to the AEC and EPC sectors in the Benelux, France, the UAE and the UK. The main goal of Eurosia as a company is to provide surveyors, general and MEP contractors with accurate BIM models to use in construction or renovation projects. The need for BIM modeling is constantly increasing with regard to construction or renovation projects.

Cedric Brusselmans, co-founder of Eurosia explains the problem they wish to solve: “The main challenge that we observe in various countries such as the Benelux and France – is that they consist mainly of medium to small companies of surveyors. This means that if they have to create a 3D model based on a point cloud, they may lose time, thus decreasing their productivity and revenue. In fact, while spending time on creating the 3D model, the surveyor may not be able to accept new projects. Our team try to take that burden away from them. Surveyors deliver us the point cloud and we create a full 3D model for them according to their specifications.”

In the process of Eurosia, surveyors can either upload their point cloud to the Eurosia server or Eurosia organizes a courier service to pick up the surveyor’s USB stick or mini-hard drive containing the point cloud within 24 hours (for point clouds that are too big in size – above 10 GB – and cannot be sent via usual channels). They then indicate which types of deliverables they would like to acquire. There will be a conversation between the surveyors and Eurosia’s project manager to ensure that standards, specifications and scope of work are matching with the requirement.  As Eurosia is taking care of the BIM model creation, surveyors can focus on their core business. Eurosia also offers 3D animation (virtual reality) services: such animation shows the building in its future state and actual environment.

Mr. Brusselmans explains: “We started this journey with FARO when we were exhibiting next to them at a trade fair in France. Naturally you start talking to your trade fair neighbors. Our respective teams saw the added value of each other’s solution. Following this event, we requested a meeting with FARO to show their different products. It was at that time we both saw that there was a connection between our services and that the combination could provide a great solution for surveyor companies. As a whole, a laser scanner is the opening door to many. This combination can also improve project efficiency for construction and installation companies.”

Eurosia sees itself working in collaboration with companies such as FARO to ensure that they can provide a good service level and adequate support to their clients. Once a BIM model and the BIM process is in place for a project, the collaboration among the different stakeholders can be smoother and more efficient. They all have the same data from the BIM model (drawings and measurements), which decreases the number of mistakes in construction and ultimately avoids extra costs and waste of time for all stakeholders.

Apr
04
2017

Point clouds point the finger for law enforcement and public safety

Daniel Oxley, Account Manager – Public Safety, Europe North, FARO Technologies UK Ltd discusses how the ability to precisely scan and capture important macro and micro crime- and incident-scene information can revolutionise forensics and legal proceedings

Advances in 3D scanning technology and its associated hardware have created a new paradigm in the ability to interrogate crimes and incident scenes in more detail than ever before. As well as measuring and preserving minute details, the technology will also speed up forensic processes and save significant legal time and costs.

With applications in arson, crime, homicide and accident analysis, to name but a few, the technology also removes many of the human factors and accidental biases that could skew or hinder subsequent investigations. By providing unaltered, unambiguous and unbiased total-scene coverage, the level of detail on offer really is a game changer.

Photos on their own are no longer adequate. The investigators may not photograph the whole scene or could accidentally miss items that may be vital to the ongoing investigation. With FARO’s 3D scanning technology this is no longer an issue, as it will record everything. Users cannot only capture the scene a lot quicker – saving up to three or four days and significant labour costs – but they will also have complete scene data. What is more it is all measurable. This is essential for automotive collisions or for comparison to personal-interrogation data from crime scenes, relating to suspect location, reach, attitude and position.

Primary point cloud data can be captured using an ultra-portable FARO S Series Laser Scanner, which scan can a scene to an accuracy of ±1 mm. Offering minimal set up, the unit is also self-levelling so is incredibly easy to use. Complementing the S Series scanner, and for hidden or tight-access areas, the Faro Freestyle Handheld Laser Scanner can provide extra detail for specific areas in static crime scenes or, thanks to its impressive portability, for crush events in vehicle accidents, where deformations can be easily recorded for further analysis. When additional levels of accuracy are required, for finer details in shoe prints, bite marks or tooling scrapes, the FARO Forensic Scan Arm is a portable contact/non-contact measurement system that offers a resolution of 0.05 mm – less than the thickness of a human hair.

To process and present the cloud data, FARO offers dedicated 2D- and 3D diagramming and advanced animation software, like FARO Zone 2D, Crash Zone, Crime Zone or the SCENE software. For example, using SCENE’s intuitive ribbon-based approach, users can leverage the software to not only view the scene, but also calculate suspect heights based on photos. Using optional modules, blood spatter origins can also be determined, as can bullet trajectories. Finally, for crime scene visualisation, in courtrooms for example, FARO’s Video Pro plug in for SCENE, allows users to navigate to any point and view scenes from any angle. Floors and roofs can be removed and videos can be created that can be shared and viewed on line or with virtual reality headwear.

With many judicial and law-enforcement applications already in place – including deployment by the International Criminal Court in Holland – 3D scanning is the new benchmark for fast, easy and accurate collection of vital scene data and it is already making a real difference in the world of forensics.

 

More information is available at http://www.faro.com

Mar
03
2017

Scan2Print

FARO, 3D Systems and Canon 3D Printing, will be co-hosting a Scan2Print event on Thursday 4th May 2017.

Taking place at the Canon Open Experience Centre, Uxbridge. the free event’s program will focus on the exciting opportunities delivered by the latest 3D Printing and 3D Scanning technologies, to enhance the efficiency of product design processes.

Real life customer examples will illustrate how informed manufacturers, engineers, and product designers are combining 3D Scanning and 3DPrinting to achieve record levels of productivity, efficiencies, and cost-reductions.

FARO’s advanced 3D solutions enables fully digital workflows by capturing real world geometry for the purposes of empowering design. The company’s advanced technologies allow innovations to be realised, faster design cycles to be completed, and not least, they enable users to become more competitive.

 

Date: 4th May 2017
Time: 9:30am – 2pm
Location: Canon Open Experience Centre, Uxbridge

 

Click here to view the Agenda.

Register here.

 

Mar
03
2017

Sir John Soane’s Museum

In collaboration with FARO and ScanLAB Projects, Sir John Soane’s Museum in London has embarked on the Explore Soane Challenge which involves giving a global audience access to its archive.

Thanks to the latest 3D scanning technology offered by FARO, The Museum was able to scan its collections in order to create an online digital archive. The Soane Museum is one of a kind. Built by distinguished 19th century architect Sir John Soane, it was a home, library and museum in one – housing his collection of artworks, sculptures, furniture and artefacts. At his death in 1837, Soane left his house and collection to the nation, stipulating that it should be kept open and free for the public’s inspiration and education.

Almost two centuries later, FARO, ScanLAB Projects and The Soane Museum have embarked on a unified project to create an online digital archive of the Museum. The project utilises the latest developments in 3D technology to scan and digitise a wide selection of rooms and objects. This includes Soane’s Model Room, and the ancient 3,500 year old Sarcophagus of King Seti I.

For 180 years, the house has remained meticulously preserved through conservation and restoration. Nevertheless, Explore Soane continues this ambition in a new, powerful way. The teams will be adding more rooms, and several more objects to the digitised collection in order to inspire and educate, precisely as Sir John Soane wished.

Teams from ScanLAB have been utilising a range of cutting edge scanning technologies from FARO. Large spaces such as rooms and stairwells have been captured using LiDAR scanners such as the FARO Focus x 330, whilst smaller objects are scanned using the latest FARO Arm scanner and photogrammetric software. The data now forms part of an archive not just for the Museum but also for future and overseas researchers interested in studying the Museum and the many models collected by Sir John Soane himself.

“At Faro we strongly believe that the future is to digitally preserve and record every artefact or site of interest for future generations.  Our mission is ‘To enable mankind to easily and accurately connect the physical world to the virtual world.’  The tools that we use to document collections have become more user friendly and cost effective which makes it more accessible to more people.  We want to make our heritage our future.” (David Southam, FARO)

Click here to explore Sir John Soane’s Museum.

Feb
23
2017

Baroque Topologies

FARO Technologies are thrilled to have aided Andrew Saunders, Associate Professor from the University of Pennsylvania to accomplish his mission of collecting a digital archive of Baroque art and architecture.  Saunders, who works in the Department of Architecture travelled to Italy for six weeks in order to scan and archive some of the most prominent Italian Baroque architecture. Following the University of Pennsylvania’s commitment to ‘advancing the public good–both locally and globally–through art, design, planning, and preservation,’ the purpose of this project was to discover a superior method to digitally explore highly complex baroque architecture.

By using a FARO Focus3D X 130 laser scanner, data was captured showing the prospering evolution from the early and high baroque in Rome extending to the late baroque in the Piedmont Region in Northern Italy. The archive includes work from Francesco Borromini, Bernardo Vittone, Gian Lorenzo Bernini, Pietro da Cortona Guarino Guarini, and Carlo Rainaldi. Precise 3D models were produced of the interior spaces of various churches which can now be viewed in full colour.

Taking into account that there were many challenges during this project, Andrew Saunders pointed out that the project would not have been possible without the contributions it received from its co-workers including FARO, Autodesk and the Italian contacts that made it possible to gain access to the scans.

FARO made a significant contribution to this project by providing a Focus3D X 130 laser scanner. This ultra-portable device allows users Topologies, FARO, University of Pennsylvania, baroque art, FAto record complex structures delivering realistic and true-to-detail scan results. The high resolution scanner has a range from 0.6m up to 30m and a distance accuracy of up to ±2mm. It also has a one million points per second scanning rate enabling fast, straightforward and accurate measurements of objects and buildings. FARO also offered software and training to those who had the responsibility of operating the laser scanner. The purpose of these scans was to create a comprehensive digital archive of the work. High resolution scans using the FARO Focus3D X 130 allowed verification, calibration and discovery of Baroque topologies.

Saunders stated, “The ability to capture, record and simulate increasingly larger sets of data, coupled with remote access to cloud computing and progressively more affordable additive fabrication technology, provides new opportunities and methods for understanding and assessing complexity and representation in architecture.”

The results from this project are extraordinary in many ways. The data that has been collected will now create digital access to some of the most prominent churches in the world, in a way that has never been available before. Furthermore, the captured scan data will allow experts to carry out reverse engineering of the algorithms behind the truly astounding baroque architecture.

However, the project is still not yet completed. It is intended that the archive will be used for in depth analysis and comparisons between the Italian churches. Moreover, The University of Pennsylvania School of Design will now work with Autodesk in order to make the archive available to the public as well as other students and scholars.

To access interactive 360 degrees views of the baroque architecture please click here. 



FARO UK Blog

Stay up to date with the latest news and trends in industrial metrology and 3D documentation.

Subscribe to our Blog

FARO Local

Follow us:

Archives