Aug
25
2016

Westerhof BV

In recent years, modern machine factories have made a strong shift in professionalizing their measuring solutions. In particular engineering factories made for specialized industries such as automotive, Oil and Gas. The main reason is that these sectors constantly require new machinery to be integrated in existing production lines. Accuracy is always a key element in this engineering process, therefore, machine factories are making a shift from manual measurements to new solutions such as 3D laser measurement.

 

 

Westerhof BV is a versatile and modern machine factory that has been going strong in the Nether-lands for over 50 years. One of Westerhof ’s main tasks is the conceptualisation, creation and imple-mentation of new machinery in existing production lines. A high level of accuracy in the preliminary measurements is vital for the basis of a precise 3D model of the machine. In the past this was the main problem as all Westerhof ’s measurements for their 3D models were done manually.

“If that happens, we have to reengineer the entire machine, causing a large financial cost for both us and the client. Because if this, we looked for a solution that gave us perfect accuracy, to avoid these mistakes,” Thijs Lenferink, commercial technical advisor at Westerhof BV explains.

The engineers at Westerhof found this solution in the FARO Focus 3D X130 laser scanner and the FARO Gage, which were able to provide the accuracy that was required for their clients. “We did some market research and eventually chose the FARO Focus 3D X130 and the FARO® Gage for the creation of 3D models and gauging of existing machinery, due to their accuracy, high quality and user-friendliness,” Lenferink explains.

Read more

Aug
22
2016

Argon Measuring Solutions NV

As part of its services to clients especially those in the gas and electricity sector, ARGON offers measuring solutions to determine when maintenance of its devices is necessary. Careful decisions regarding maintenance have to be as cost effective as possible.

Before going over to the FARO Edge ScanArm and FARO Laser Tracker, ARGON saw that the previous hardware that was offered didn´t meet ARGON´s requirements according to Stijn De Leener, Finance, HR and Administration at ARGON: “The previous devices were too difficult to handle for our engineers and especially for the clients. In addition, the point cloud was too small  for our line of work and the accuracy needed improvement since the more accurate you can be, the better informed your decisions can be. Because of this we made the switch to the FARO Edge ScanArm and this in combination with the FARO Laser Line Probe has brought spectacular results.”

ARGON MS 1

 

3D CORROSION SCANNING WITH THE FARO EDGE SCANARM

As part of its pipeline integrity management, a main independent operator of both the natural gas transmission and storage infrastructure in Belgium monitors corrosion on its gas transport pipelines with the help of ARGON and the FARO ScanArm. 3D scanning increases the accuracy of the corrosion measurements, leading to better informed decisions and lower repair costs. Quantification of this corrosion is not easy since pipes are curved and corroded spots have complex shapes. Traditional measurement methods like calipers are often unusable and very conservative, giving less accurate values of the corrosion state. Using the FARO ScanArm, ARGON is able to make a 3D copy of a corroded area.

Read more

Aug
12
2016

FARO ‘Inserts’ Quality for MSA Foams

Part of the Peli UK Group since 2012, MSA Foams Ltd offers a wide range of transit cases and produces bespoke foam inserts and packaging for the protection and presentation of items being transported. To help satisfy the growing demand for the company’s high quality products, Dorset based MSA Foams have in- vested heavily in relocating to new premises, employing further skilled staff and purchasing the latest foam design and cutting technologies. MSA tailors its services to correspond with each individual customer’s specific requirements. Foam inserts can be custom designed and produced to accommodate the
majority of customers’ products and to match almost any type of case or container.
DSC_0041
In order to be as responsive as possible to customers’ needs and to provide the most accurate, custom cut foam inserts, MSA recently invested in a FARO Edge ScanArm HD and Geomagic software. The use of the advanced portable device that features rapid action and quick set up times, enables customers’ products to be scanned quickly and accurate profiles and dimensional data to be captured. Once a product’s scanning routine has been completed, if required the acquired data allows the viewing of virtual representa- tions of foam inserts and cases to be shown to customers.
Read more
Jul
21
2016

Reverse engineering: principles, applications and solutions

What is reverse engineering?

Reverse engineering allows the duplication of an existing product, without having the plans, documents or technical details of the product.

In a classical production procedure, the creator creates a detailed plan, in which the production properties of a product are explained. After that, the product goes into production and is built according to that plan.

Reverse engineering follows a reversed method. First, engineers identify the components of a system, as well as finding out how they all relate to one another in order for the system to work. The object is decomposed to ascertain the inner structure, the function of all parts and the way they operate. The making of a duplicate comprises of discovering the physical dimensions, the functionalities and the material qualities of an object.

After that, the moment has arrived to construct a representation of the system analysis with the aid of a computer. The next final entails the reproduction of the original system with extreme accuracy, following the previously laid out plan.

Why do we need reverse engineering?

This is a classical scenario in which reverse engineering is warranted: A company has a machine, but one of the components has broken down, so it needs to be replaced. However, the manufacturer has ceased production of that machine and all of its parts; they don’t supply spare pieces anymore. The owner of the machine can set up a procedure of reverse engineering of the broken piece, rather than having to buy a new machine.

Reverse engineering allows for shorter delays in product development, because this method can rapidly deliver a replacement for a faulty piece, that can be used in a prototype as equipment or in the production process.

However, reverse engineering has a whole array of uses:

  • To replace an original piece of which the documentation is incomplete or non-existent;
  • To redesign a piece in order to eliminate an error or to enhance some beneficial aspects;
  • To analyse products made by the competition;
  • To support new functions in case the original plans did not allow for that
  • To still make use of older or obsolete technologies that are no longer in production
  • To create plans or documentation of original products when there are no plans to be found, even after these products are already in use;
  • To deliver an essential piece in a short time span, without having to shut down the production process for a long time.

How are objects measured in a reverse engineering procedure?

To recreate an object, you have to ascertain the physical dimensions precisely. If you don’t have extremely accurate object measurements, it is possible that the recreated object won’t work because it is not an exact copy of the original.

It is possible to make these very precise measurements manually, with the help of a marking gauge, a micrometre, or other instruments of that type. In modern reverse engineering however, a tridimensional measuring machine is able to determine the geometrics of an object faster and more accurately than any manual measuring device is capable of.

A tridimensional measuring machine measures on three axels, X, Y and Z, and uses a coordinated system in three dimensions. Every axel has a basis, which determines the position of a point on that axel.

Tridimensional measuring machines use feelers to register a point as soon as the instrument comes in contact with the surface of the object that needs to be measured. Each point is measured individually, until the tridimensional measuring machine has collected enough data to allow the software to determine the length, angles and other geometric information of the object. The machine reads the data that enters through the feelers in function of the instructions that the operator has provided. The XYZ-coordinates of each point are then used to ascertain the size and position. A tridimensional measuring machine can measure the dimensions in two different ways: on the hand through direct contact with the object, on the other hand with the help of a laser scanner. The cloud of gathered points is then converted to recreate the surface of the object. This data print is then sent to a computer programme in order for it to be refined, analysed and expanded.

 

design scanarm 2

 

A solution for the digitalisation of a high resolution Arm for reverse engineering: the Design ScanArm combined with Geomagic software.

In order to answer to the needs of the market while designing a product, FARO has developed the Design ScanArm, a new measuring arm combined with a 3D scanner. This innovation is a digital, portable 3D solution made for 3D modelling in designing and the entire managing process, which lasts for the entire product life span.

The FARO Design ScanArm uses modern blue laser technology with an increased digitalisation speed in order to obtain point clouds with a high resolution and to be able to digitalise existing materials without problems, without having to use sprays and other such materials. The apparatus is very light and easy to move, so it can be placed in a lab or study room with ease. The Design ScanArm has a simplified user interface which allows for an easy use, even for users with limited experience or competence in 3D digitalisation.

Due to the combination of the FARO 3D digitalisation and the possibilities of the modelling software by Geomagic, the Design ScanArm offers a key solution that allows its users to digitalise, recreate and modify existing models or test prototypes quickly and with ease. This solution enables users to quickly transfer digitalised data to computer models, that can still be modified. Once the data is received, you can use the modelling functions in different ways, without having to use any other application.

Conclusion  

Reverse engineering is an important discipline that can contribute immensely to the life span of machines by enabling the proprietor of the machine to manufacture spare parts at will, even when these are not in production anymore. Reverse engineering also allows for new pieces to be added, to add additional functions or to eliminate errors.

The simplest, fastest, and easiest-to-use tool to measure and create products in the context of a recreating procedure, is a light-weight, portable tridimensional measuring machine. This tool allows you to measure objects with or without contact. The combination of these advantages that the FARO Design ScanArm offers, gives operators a fast and efficient solution in the present work environment and gives them a competitive advantage.

Jul
12
2016

FARO Factory Array Imager

The next generation of automated probes offer advanced in-process inspection for integration and infrastructure at minimal costs.

The FARO Factory Array Imager is a scanner with extremely high accuracy for contactless measurements which, with its blue-light technology measurement, within seconds computes several million 3D coordinates on component surfaces – regardless of colour, texture, reflectance or ambient light.

Structured light and stereo recordings open up new possibilities in 3D measurement & inspection and reverse engineering. The new optical 3D measurement system by FARO, the FARO Factory Array Imager, combines the two processes and complements them with high-performance 3D processing.

The combination of flexibility, portability, speed and accuracy makes the compact and light FARO Factory Array Imager an ideal but cost-effective solution for 3D data capture or reverse engineering of components or modules in many different industries, such as automotive, aviation and space flight, and mechanical and plant engineering.

cobalt 3 [Read more …]

Jul
01
2016

3D documentation without CAD

FARO is expanding the possibilities of 3D laser scanning with a range of innovations. There is a clear trend towards making point clouds the focus of documentation applications.

Scanning on-site and immediately having a registered point cloud available on a mobile device – this has been a long-time dream of 3D laser scanning experts. Instead, one hour’s work in the field always meant several hours of office work to turn the scan data into usable data products. FARO Europe GmbH is now offering the possibility of registration in the field. Thanks to the new FARO® Scan Localizer, it is now possible to register scans on-site and in real time and thus generate a point cloud using equipment in the field. This add-on product is integrated into the Laser Scanner Focus3D tripod. It constantly performs 2D scans while also surveying the measuring environment within a horizontal profile covering approximately 180 degrees. It has a measuring range of up to 20 metres. The end result is a type of reference profile, which can be used to register the relevant scans from different locations within a single point cloud. This is all thanks to the cloud-to-cloud registration process, which has been a feature in SCENE for around two years. “It means that there is no longer any need for reference registration marks for overlapping areas in interior spaces,” says Oliver Bürkler, Director of Product Management at FARO. The intention is primarily to boost efficiency for projects with a high number of individual images. “We assume that it will generate significant cost advantages where there are 15 or more scans. For example, the device is absolutely indispensable when measuring interior spaces, where you often take more than a hundred scans,” Bürkler adds. According to the company, the FARO Scan Localizer is available as an add-on to the FARO Laser Scanner Focus3D (2015 model or later) and costs around 15,000 euros.

 

SCENE 1

The FARO Scan Localizer is affixed to the tripod. It carries out a horizontal 180-degree measurement that enables real-time positioning in interior spaces.

 

HDR integration

FARO has launched a number of innovations onto the market to further improve 3D laser scanning. This includes integrating high-dynamic-range (HDR) photography into the FARO Laser Scanner Focus3D. This new option lets you increase the resolution for images with significant differences in brightness. The HDR camera in the Focus3D X 130 HDR and 330 HDR models deliver 170 megapixels and offer a contrast range of up to 4 billion-to-1, which means that the respective bright areas can be optimally rendered for the human eye (i.e. for the screen). Bürkler describes a practical example: “Customers working in dark spaces, e.g. pipeline construction, can decipher even small labels, which are usually very light, in the point cloud”.

Closer to reality

A first glance at the new Version 6 of FARO’s point cloud software SCENE makes it very clear that it represents a new master release. The entire user interface has been redesigned and is now heavily based on typical workflows. Making the software easy and efficient to use was key. The work steps within the workflows are divided into clear, individual steps and are arranged in a logical sequence. All of the individual functions available in the previous version are now listed as processing options for the relevant processing steps in projects. The aim is to help users, especially those without extensive prior experience to get to grips with the system easier and faster. “When we developed the workflow-based tools, we defined typical use cases and automated them completely,” says Bürkler. In the event that manual intervention is needed, the software provides appropriate support and guidance. “This keeps the training required to an absolute minimum, which means that the learning time for new users is extremely short,”  the product manager said.  If anyone prefers the old interface for example, for dealing with complex, engineering-related technical issues they can easily switch back to the previous GUI.

Users will also find new rendering technology in SCENE 6 interesting. It delivers an even better level of visualisation for solid surfaces and eliminates the need for further data processing in visualisation applications.

“Solid surfaces now look completely realistic,” explains Bürkler. Conventional point cloud visuals have been transformed into fully immersive virtual reality environment. For example several new features ensure that the point cloud density for walls is interpolated so that the original, roughly rendered (“holey”) point clouds are automatically converted into closed surfaces. Colours are also homogenised in this way so that solid bodies or textures become significantly more realistic. This means that solid surfaces are not visualised using individual measuring points but rather as realistic, closed objects.

SCENE 2

New rendering features in the latest Version 6 of SCENE come in the form of closed surfaces: measuring points are turned into solid bodies to optimise the visualisation.

Ever more in the cloud

FARO insists that the benefits of this type of hyper-realistic point cloud are not just reserved for experts, thanks to the new version of its web hosting service SCENE WebShare Cloud. Being an online service it delivers significantly better performance, as well as being simpler and more user-friendly. All team members can now access documentation data quickly and easily without needing any special software or hardware. Each file is coded individually using the best encryption method available today (AEC 256), which guarantees the highest levels of IT security. In recent years, many customers have been sceptical about cloud applications for security reasons or have rejected them out of hand due to the massive volumes of data involved and the lack of fluid rendering. Nevertheless FARO confirmed that more and more customers are now using the cloud.

Consequently point clouds can be used for documentation-related tasks that were previously the reserve of CAD software. The advantage given that point clouds map complex local conditions, customers can dive into an existing environment ‘virtually’ for a more direct understanding of conditions on the ground. These features are used for example, by key FARO customers such as carmaker Volvo which documents all of its production facilities around the world using FARO scanners and uses these as the basis for further planning or new buildings. The company aims to have point clouds serve as the basis for all documentation applications leaving CAD for the virtual planning level only. This approach represents a paradigm shift since common practice today is still to translate point clouds into CAD models. A point cloud can now be enhanced with CAD functions to create a comprehensive 3D documentation IT landscape. “This will be the basis for future FARO developments,” predicts Oliver Bürkler.

Jun
16
2016

Focus3D scans the Sinaia Casino to deliver detailed 360° view in Webshare Cloud

The Casino in Sinaia, Romania was built at the initiative of King Carol I of Romania between 1912-1913. The Sinaia Casino was designed by the famous Romanian architect Petre Antonescu. The building is considered a historic monument and serves as an International Conference Centre. A detailed examination of the site’s current condition was required in order to lay down the restoration and preservation project. Therefore the 3D laser scanning method was chosen in order to carry out the survey of the monument. “Our task was to create a complete Building Information Management system in 2D (ground plans) and 3D (point cloud data) as soon as possible, so that planning and construction work will be based on reliable information. To do this, we deployed two expert teams.
One team was on site scanning with a FARO Focus3D laser scanner while the other team was processing the point cloud data” explains CEO International Partner Buro, Dipl. Ing. Marian Radoi.

3DLS_Sinaia_Casino_EN_3

“For complex projects as this the Focus3D offers many advantages. It is a non-invasive method of data collection, appropriate in case of surveying historic buildings. The large amount of data, obtained in a very short time, allows for the analysis of the current state of a monument. The great amount of captured details allows planning preservation and rehabilitation works, as well as monitoring the intervention in time.” says Dipl. Ing. Marian Radoi.

Read more

May
23
2016

FARO delivers flexible measurement to Panasonic – Precisely

Panasonic operates an advanced testing facility that performs precise emission measurement tests across a range of products including TV, IT, video, microwave and medical products. To establish self-regulated quality assurance processes in each group company, Panasonic published Quality Management System Development Guidelines in 2004. Each group company then implemented the Panasonic Quality Management System (P-QMS). P-QMS complement the requirements of the ISO9001 standard with Panasonic’s own quality assurance methods and experience to create a quality management system that aims to deliver the level of quality that the company demands. Panasonic Manufacturing UK’s stringent quality standards, diverse nature and size of the products that are both developed and produced on site, requires the use of a wide range of relatively dedicated measuring instruments……

P1890087 (4)

Read more

Apr
27
2016

Pompeii new secrets revealed

A new special of the BBC One show Pompeii: New Secrets Revealed with Mary Beard has helped uncover some myteries in Pompeii. This is one of the most iconic archaeological sites and with the use of the FARO Laser Scanner Focus3D unearthed the human stories behind the casts hidden underground.  The presenter of the show Mary Beard is a passionate TV historian who wanted to find out the truth the bodies underneath the ashes. This ancient city was destroyed by volcanic ash and pumice during the eruption of Mount Vesuvius in AD 79. Researchers were able to examine in detail the remains of bodies to find out more about how these people lived their lives thousands of years ago.

Picture_Pompeii_Video

The precise yet simple laser scanner is especially suited to the outdoors due to its small size and lightweight capabilities. The FARO Focus3D Laser scanner was able to perform the most detailed scan of the archaeological site and was shown on the BBC One show for the world to see. The Focus3D can create a precise, virtual copy of the scanned objects at millimetre accuracies in only minutes by capturing up to 976,000 data points per second. Estelle Lazer from the University of Sydney was able along with her team to help Mary unpick the remains which are preserved in Pompeii.

ScanLABProject Pompeii New Secrets Revealed  on Vimeo.

Apr
18
2016

The FARO laser scanner records everything that happens on the building site…

IMG_20151023_093107Previously a bank, now a large restaurant of 720 metres, with a capacity of 140 seats: the construction of Studio 16, which opened its doors in Orléans in the
Autumn of 2015, represented a huge challenge in terms of construction, development of the space and decoration.

MB Design, a firm specializing in interior architecture, was charged with the creation and the realisation of this new concept, and monitored the progress of the building work closely, over a period of 8 months. “We had decided to carry out surveys using a FARO Focus3D X 130 scanner as the work progressed. In doing so, we were able to ensure a real and precise indication of the position of all elements of the site that would end up being hidden by various partitions and covers. The objective was to know exactly where the pipes and cables lay, which would turn out to be very useful later, for example when making an alteration, or if a problem were to occur in one of the hidden installations (a blocked pipe or a leak, for example),” said Michael Bustillo, Director of MB Design and sister company ABM2 (which specialises in surveys).

Like any establishment open to the public, the restaurant had to comply with building regulations before being allowed to open. A problem comes to light at this point: the facilities are 4 cm above the permitted height. Who is to blame? The plumber says he worked with the reference line, i.e. the horizontal level line marked on the wall by the bricklayer. The surveys obtained by ABM2 quickly prove otherwise: the resolution of the FARO Focus3D scanner is such that the bricklayer’s line is clearly visible. This simple fact has farreaching consequences: “Firstly, we have not lost time discussing whether the bricklayer or the plumber was right. Then we saved money because to trace a possible line level would have required breaking tiles which had been laid on top of it. Finally, there is no dispute to be resolved: the plumber being wrong, the removal of the fittings and their reinstallation at the right height becomes his problem,” explains Michael Bustillo. In playing the role of “justice of the peace”, the scanner saved a great deal of time and the establishment was able to open on schedule.

Read more



FARO UK Blog

Stay up to date with the latest news and trends in industrial metrology and 3D documentation.

Subscribe to our Blog

FARO Local

Follow us:

Archives